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Top-down versus global induction
● There exist dozens of DT systems (CART, ID3-family, AID-

family, ...), but a wide diversity is somehow seeming
● Almost all approaches are based on top-down induction + post 

pruning
– learning set is associated with the root node 
– the optimal test searches and data splitting are recursively 

repeated to consecutive subsets of the training data until the 
stopping condition is not met

– fast, easy to implement & efficient in practical situations
– however for many problems this approach fails (e.g. classical 

chessboard)
● Global approach 

– the whole tree (its structure and tests in non-terminal nodes) is 
searched at the time

– more computationally complex, but it can reveal hidden 
regularities
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GDT – Global Decision Tree system
● GDT system is based on specialized evolutionary algorithms

– different types of decision trees: univariate (axix-parallel), oblique 
and mixed

– cost-senstive classification (different misclassification costs and 
feature costs)

● In contrast to classical top-down approaches GDT searches for 
the optimal tree in a global manner:
– it learns a tree structure and splits in one run of EA
– globally generated classifiers are generally less complex with at 

least comparable accuracy
● In this paper, for the first time a memetic algorithm for global 

induction of univariate decision trees is proposed by extending 
the GDT system
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Memetic algorithms
● It is known that pure evolutionary methods are powerful and 

robust but not the fastest methods 
– a lot of effort is put into speeding them up

● One of the possible solutions is a combination of evolutionary 
approach with local search techniques, which is known as 
Memetic Algorithms

● However, designing a competent memetic algorithm for a given 
problem is not an easy task and a number of important issues 
have to be addressed 
– where and when local search should be applied during the 

evolutionary search
● In the proposed approach the local search component 

responsible of the optimal test search in internal nodes is 
introduced in the initialization and embedded into the mutation 
operator
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Representation
● Decision trees are complicated structures as number of nodes, 

test types and number of test outcomes are not known a priori 
for the learning set
– additional information in nodes is necessary during the induction 

(e.g. feature vectors associated with a node) => not especially 
encoded, represented in their actual form

● Test types:
– inequality tests with two 

outcomes for 
continuous-valued features 

● only boundary thresholds as potential splits; a boundary 
threshold => a midpoint between such a successive pair of 
examples in the sequence sorted by the increasing value of 
the attribute, in which examples belong to different classes

● all boundary thresholds are calculated before starting the 
induction => it significantly limits the number of possible splits 
and focuses the search
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Representation (2)

● locally applied the optimal test search can find a split, which is 
not based on a pre-calculated threshold

– for nominal attributes  group of feature values can be associated 
with each branch starting in the node (internal disjunction)

age<35 credit purpose

{house, 
flat} {car}

{holidays}

Example of inequality test
Example of nominal test 
with internal disjunction
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Initialization
– An initial population should 

be created with emphasis on 
diversity of candidate 
solutions:

● it is especially useful when 
large search space is 
penetrated => it can focus 
and significantly speed up 
the search process

– Initial trees are created by 
applying the top-down 
algorithm to randomly 
chosen sub-samples of the 
original data 

● 10% of training data, but 
not more then 500 
examples

– Test search strategies:
● 3 strategies come from the systems  

(CART and C4.5) and are based on 
GiniIndex, InfoGain and GainRatio

● dipolar strategy - a test splitting 
randomly selected mixed dipole (a 
pair of feature vectors from different 
classes) is searched

● a random combination of all the  
aforementioned strategies

– Stopping condition:
● all training objects in a node belong 

to the same class 
● the number of objects is lower than 

the predefined value (default: 5)
– Finally, the resulting trees are post-

pruned according to the fitness
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Genetic operators
● There are two specialized operators corresponding to classical 

mutation and crossover
● Mutation-like operator is applied to randomly chosen node 

– first the node type is chosen and then a ranked list of nodes of 
the selected type is created (mechanism is similar to linear 
ranking selection)

● Possible modifications depend on the node type:
– in an internal (non-terminal) node [ranking takes into account 

both accuracy of the subtree starting in the node and its level in 
the tree]:

● a completely new test can be drawn: 
– with the user defined probability (default: 0.05) a new test can 

be locally optimized (GiniIndex, InfoGain or GainRatio) or can be 
chosen to split a randomly drawn mixed dipole from the learning 
subset associated with the node; 
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Mutation (cont.)

– for nominal features only tests with the maximal number of 
outcomes are analyzed due to the computational complexity 
constraints

● existing test can be altered by shifting the splitting threshold 
(continuous-valued feature) or re-grouping feature values 
(nominal feature); 

– modifications can be purely random or can guided by dipolar 
principle of splitting mixed dipoles and avoiding to split pure

● the test can be replaced by another test from the tree,
● the node can be transformed into a leaf

– a leaf [only if it is not homogeneous and leaves which are worse 
in terms of classification accuracy are mutated with higher 
probability]:

● is transformed into an internal node and a new test is drawn
● this can be repeated recursively repeated for descendants
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Crossover
● When crossover is applied the randomly chosen parts of  two 

trees are swapped:
– subtrees or only tests in the nodes can be exchanged,
– there are a few variants of this exchange which are randomly 

drawn taking into account structures of two subtrees
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Additional operations
● The application of any 

genetic operator can result in 
a necessity of relocation of 
the input vectors between 
parts of the tree rooted in the 
modified node 
– it can lead to non-effective 

tests and empty subtrees, 
which are eliminated, 

– additionally local 
maximization of the 
fitness function is 
performed by pruning lower 
parts of the subtree on 
condition it improves the 
value of the fitness

● Enlarging margins => 
improves classification 
accuracy

● Centering is applied to the 
best decision tree found
– only for inequality tests - 

thresholds are shifted to 
half-distance between the 
corresponding feature 
values  

– it does not change the value 
of the fitness 
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Fitness function
● The goal of any classification system is the correct prediction of 

class labels of new objects => such a target function cannot be 
defined directly

● Accuracy on the training data is often used =>  their direct 
optimization leads to over-fitting problem 
– in typical top-down induction, the problem is mitigated by defining 

a stopping condition and by applying a post-pruning
● In the presented approach a complexity term is introduced and 

the fitness function (maximized) is defined as follows:

– where: QReclass(T) is the re-classification quality, S(T) - the size of 
the tree (number of nodes) ,α  - relative importance of the 
complexity term (default:0.001) and a user supplied parameter

– subtracting 1.0 eliminates the penalty when the tree is composed 
of only one leaf (in majority voting)
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Experimental validation
● The proposed memetic system (denoted as GDT-MA) is 

compared with:
– the well-known C4.5 system by J. R. Quinlan 
– the standard version of GDT (denoted as GDT-AP)

● Performance of all systems is assessed on two types of 
problems:
– artificial datasets with analytically defined decision borders 
– real-life datasets publicly available from UCI ML Repository

● All systems are tested with a default set of parameters
● Results correspond to averages of 10 runs and were obtained 

by 10-fold stratified cross-validation or measured on the testing 
set (when provided)
– number of nodes (internal nodes and leaves) as the complexity 

measure („size” in the tables)
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Artificial dataset

– For all domains global systems 
performed very well, both in terms 
of accuracy and complexity

– Compared to C4.5 both global 
inducers were able to find proper 
solutions when top-down system 
failed and returned a default class



SOFSEM'08 16/18

Real-life datasets
– In terms of the 

classification accuracy 
GDT-MA performed 
comparable to C4.5 (for 
certain datasets it is 
slightly better for other is 
slightly worse)

– In terms of the simplicity of 
the solution, the proposed 
memetic algorithm is 
significantly better than 
C4.5 

– GDT-MA was more 
accurate than its pure 
evolutionary predecessor 
for 12 out of 15 analyzed 
real-life datasets



SOFSEM'08 17/18

Performance on large datasets
● The experiment was performed on two variants of the chess  

dataset with increasing number of observations: 
– starting from 100 000 learning vectors up to 500 000

● GDT-MA can deal with large datasets:
– optimal trees were found, 

both in terms of the accuracy 
and the tree size

– acceptable time - 7 hours 
as measured on a typical 
machine (Xeon 3.2GHz, 
2GB RAM)

– induction time scales 
almost linearly with 
the dataset size
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Conclusion
● A specialized memetic algorithm was developed for global 

induction of decision trees
– the local search for optimal tests in nonterminal nodes based on 

the classical optimality criteria is embedded into the evolutionary 
search process

● Even preliminary results show that such a hybridization is 
profitable and improves the evolutionary induction

● The presented approach is still under development:
– the influence of the local search operator on the performance 

must be studied in more details
– additional optimality criteria (e.g. TwoingRule) are planned

● For data mining application of evolutionary algorithms there is 
always a strong motivation for speeding them up:
– EA are well suited for parallel architecture => we are re-

implementing the GDT system in a distributed environment 


