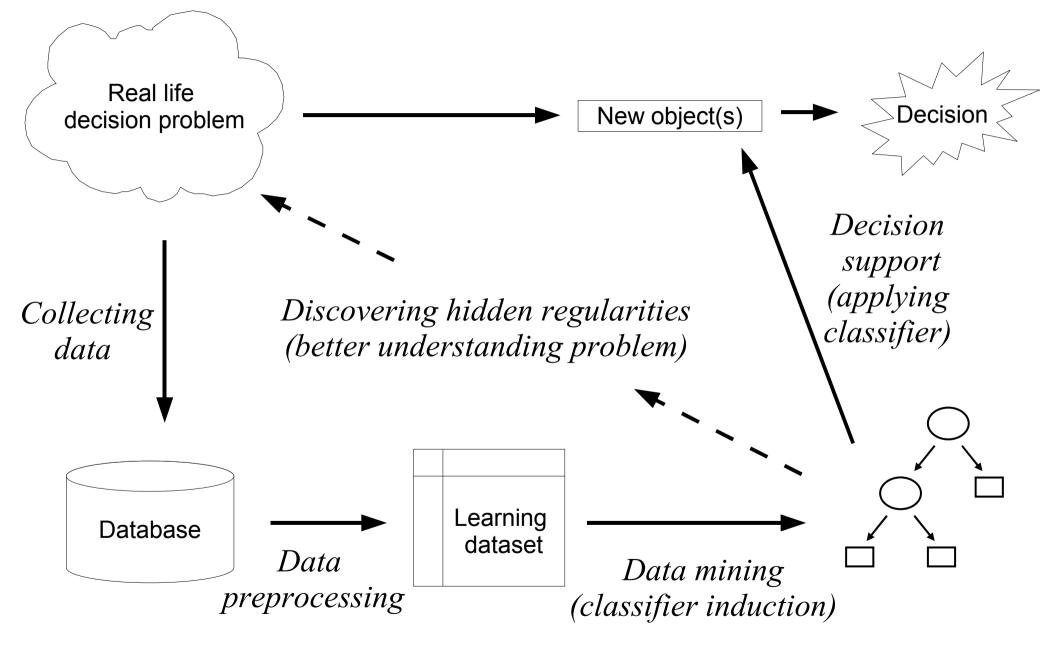
A Memetic Algorithm for Global Induction of Decision Trees

Marek Krętowski Faculty of Computer Science Białystok Technical University Poland

Knowledge discovery process



Top-down versus global induction

- There exist dozens of DT systems (CART, ID3-family, AIDfamily, ...), but a wide diversity is somehow seeming
- Almost all approaches are based on top-down induction + post pruning
 - learning set is associated with the root node
 - the optimal test searches and data splitting are recursively repeated to consecutive subsets of the training data until the stopping condition is not met
 - fast, easy to implement & efficient in practical situations
 - however for many problems this approach fails (e.g. classical chessboard)
- Global approach
 - the whole tree (its structure and tests in non-terminal nodes) is searched at the time
 - more computationally complex, but it can reveal hidden regularities

SOFSEM'08

GDT – Global Decision Tree system

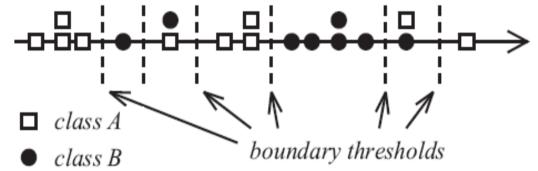
- *GDT* system is based on specialized evolutionary algorithms
 - different types of decision trees: univariate (axix-parallel), oblique and mixed
 - cost-senstive classification (different misclassification costs and feature costs)
- In contrast to classical top-down approaches *GDT* searches for the optimal tree in a global manner:
 - it learns a tree structure and splits in one run of EA
 - globally generated classifiers are generally less complex with at least comparable accuracy
- In this paper, for the first time a memetic algorithm for global induction of univariate decision trees is proposed by extending the GDT system

Memetic algorithms

- It is known that pure evolutionary methods are powerful and robust but not the fastest methods
 - a lot of effort is put into speeding them up
- One of the possible solutions is a combination of evolutionary approach with local search techniques, which is known as Memetic Algorithms
- However, designing a competent memetic algorithm for a given problem is not an easy task and a number of important issues have to be addressed
 - where and when local search should be applied during the evolutionary search
- In the proposed approach the local search component responsible of the optimal test search in internal nodes is introduced in the initialization and embedded into the mutation operator

Representation

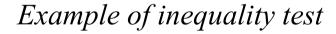
- Decision trees are complicated structures as number of nodes, test types and number of test outcomes are not known a priori for the learning set
 - additional information in nodes is necessary during the induction (e.g. feature vectors associated with a node) => not especially encoded, represented in their actual form
- Test types:
 - inequality tests with two outcomes for continuous-valued features

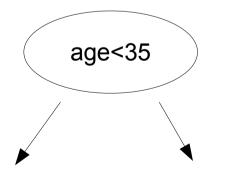


- only boundary thresholds as potential splits; a boundary threshold => a midpoint between such a successive pair of examples in the sequence sorted by the increasing value of the attribute, in which examples belong to different classes
- all boundary thresholds are calculated before starting the induction => it significantly limits the number of possible splits and focuses the search_{SOFSEM'08}

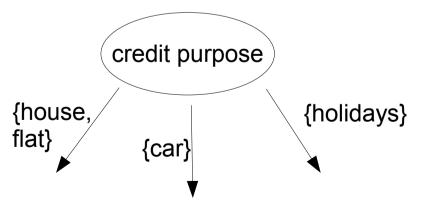
Representation (2)

- locally applied the optimal test search can find a split, which is not based on a pre-calculated threshold
- for nominal attributes group of feature values can be associated with each branch starting in the node (internal disjunction)





Example of nominal test with internal disjunction



Initialization

- An initial population should be created with emphasis on diversity of candidate solutions:
 - it is especially useful when large search space is penetrated => it can focus and significantly speed up the search process
- Initial trees are created by applying the top-down algorithm to randomly chosen sub-samples of the original data
 - 10% of training data, but not more then 500 examples

- Test search strategies:
 - 3 strategies come from the systems (CART and C4.5) and are based on *GiniIndex*, *InfoGain* and *GainRatio*
 - dipolar strategy a test splitting randomly selected mixed dipole (a pair of feature vectors from different classes) is searched
 - a random combination of all the aforementioned strategies
- Stopping condition:
 - all training objects in a node belong to the same class
 - the number of objects is lower than the predefined value (default: 5)
- Finally, the resulting trees are postpruned according to the fitness

Genetic operators

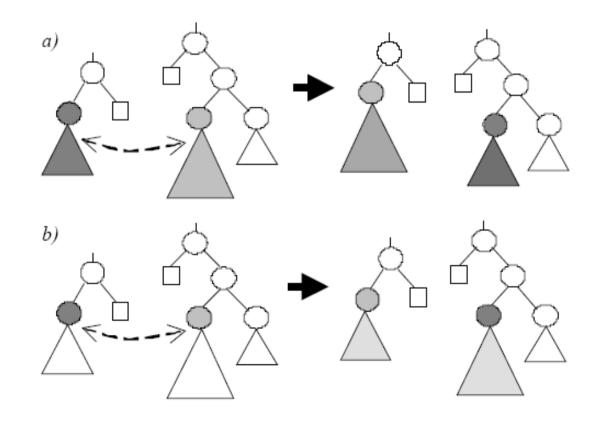
- There are two specialized operators corresponding to classical mutation and crossover
- Mutation-like operator is applied to randomly chosen node
 - first the node type is chosen and then a ranked list of nodes of the selected type is created (mechanism is similar to linear ranking selection)
- Possible modifications depend on the node type:
 - in an internal (non-terminal) node [ranking takes into account both accuracy of the subtree starting in the node and its level in the tree]:
 - a completely new test can be drawn:
 - with the user defined probability (default: 0.05) a new test can be locally optimized (*GiniIndex*, *InfoGain* or *GainRatio*) or can be chosen to split a randomly drawn mixed dipole from the learning subset associated with the node;

Mutation (cont.)

- for nominal features only tests with the maximal number of outcomes are analyzed due to the computational complexity constraints
- existing test can be altered by shifting the splitting threshold (continuous-valued feature) or re-grouping feature values (nominal feature);
 - modifications can be purely random or can guided by dipolar principle of splitting mixed dipoles and avoiding to split pure
- the test can be replaced by another test from the tree,
- the node can be transformed into a leaf
- a leaf [only if it is not homogeneous and leaves which are worse in terms of classification accuracy are mutated with higher probability]:
 - is transformed into an internal node and a new test is drawn
 - this can be repeated recursively repeated for descendants

Crossover

- When crossover is applied the randomly chosen parts of two trees are swapped:
 - subtrees or only tests in the nodes can be exchanged,
 - there are a few variants of this exchange which are randomly drawn taking into account structures of two subtrees



Additional operations

- The application of any genetic operator can result in a necessity of relocation of the input vectors between parts of the tree rooted in the modified node
 - it can lead to non-effective tests and empty subtrees, which are eliminated,
 - additionally local maximization of the fitness function is performed by pruning lower parts of the subtree on condition it improves the value of the fitness

- Enlarging margins => improves classification accuracy
- Centering is applied to the best decision tree found
 - only for inequality tests thresholds are shifted to half-distance between the corresponding feature values
 - it does not change the value of the fitness

Fitness function

- The goal of any classification system is the correct prediction of class labels of new objects => such a target function cannot be defined directly
- Accuracy on the training data is often used => their direct optimization leads to over-fitting problem
 - in typical top-down induction, the problem is mitigated by defining a stopping condition and by applying a post-pruning
- In the presented approach a complexity term is introduced and the fitness function (maximized) is defined as follows:

 $Fitness(T) = Q_{Reclass}(T) - \alpha \cdot (S(T) - 1)$

- where: $Q_{Reclass}(T)$ is the re-classification quality, S(T) the size of the tree (number of nodes), α relative importance of the complexity term (default:0.001) and a user supplied parameter
- subtracting 1.0 eliminates the penalty when the tree is composed of only one leaf (in majority voting)

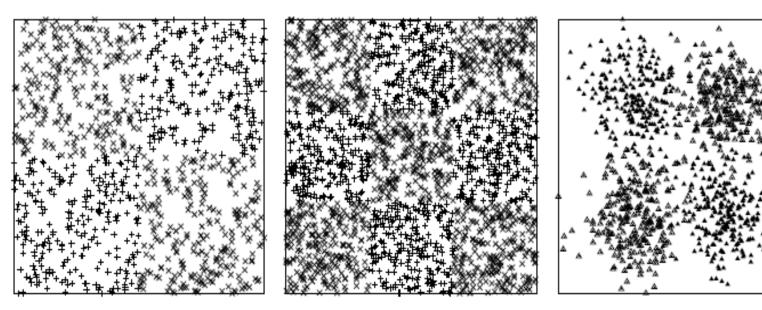
Experimental validation

- The proposed memetic system (denoted as *GDT-MA*) is compared with:
 - the well-known C4.5 system by J. R. Quinlan
 - the standard version of GDT (denoted as GDT-AP)
- Performance of all systems is assessed on two types of problems:
 - artificial datasets with analytically defined decision borders
 - real-life datasets publicly available from UCI ML Repository
- All systems are tested with a default set of parameters
- Results correspond to averages of 10 runs and were obtained by 10-fold stratified cross-validation or measured on the testing set (when provided)
 - number of nodes (internal nodes and leaves) as the complexity measure ("size" in the tables)

Artificial dataset

- For all domains global systems performed very well, both in terms of accuracy and complexity
- Compared to C4.5 both global inducers were able to find proper solutions when top-down system failed and returned a default class

	C4.5		GDT-MA		GDT-AP	
Dataset	size	quality	size	quality	size	quality
chess2x2	1	50	4	99.9	4	99.8
chess2x2x2	1	50	8	99.8	8	99.7
chess3x3	9	99.7	9	99.8	9	99.7
chess3x3x3	54	99.3	27.2	99.0	27.1	98.9
house	21	97.4	12.1	96.4	13.3	96.6
$\operatorname{normchess}$	1	50	4.1	95.5	4.2	95.5
normwave	15	94	8.8	92.6	9.1	93.5



chess3x3 SOFSEM'08

norm chess

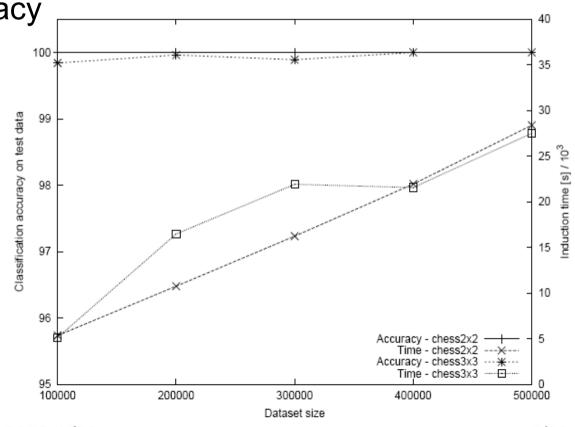
Real-life datasets

- In terms of the classification accuracy *GDT-MA* performed comparable to *C4.5* (for certain datasets it is slightly better for other is slightly worse)
- In terms of the simplicity of the solution, the proposed memetic algorithm is significantly better than C4.5
- GDT-MA was more accurate than its pure evolutionary predecessor for 12 out of 15 analyzed real-life datasets

	C4.5		GDT-MA		GDT-AP	
Dataset	size	quality	size	quality	size	quality
balance-scale	57	77.5	20.8	79.8	32.8	78.2
bcw	22.8	94.7	5.7	95.6	6.6	95.8
bupa	44.6	64.7	33.6	63.7	69.3	62.8
cars	31	97.7	3	97.9	4	98.7
cmc	136.8	52.2	19.2	55.7	13.1	53.8
german	77	73.3	18.4	74.2	16.5	73.4
glass	39	62.5	35.3	66.2	40.4	63.6
heart	22	77.1	29	76.5	44.9	74.2
page-blocks	82.8	97	7.4	96.5	7.5	96.4
pima	40.6	74.6	14.8	74.2	14.3	73.8
sat	435	85.5	18.9	83.8	19.2	83
vehicle	138.6	72.7	43.2	71.1	45.1	70.3
vote	5	97	10.9	96.2	13.5	95.6
waveform	107	73.5	30.7	71.9	36.2	72.3
wine	9	85	5.1	88.8	5.2	86.3

Performance on large datasets

- The experiment was performed on two variants of the *chess* dataset with increasing number of observations:
 - starting from 100 000 learning vectors up to 500 000
- *GDT-MA* can deal with large datasets:
 - optimal trees were found, both in terms of the accuracy and the tree size
 - acceptable time 7 hours as measured on a typical machine (Xeon 3.2GHz, 2GB RAM)
 - induction time scales almost linearly with the dataset size



Conclusion

- A specialized memetic algorithm was developed for global induction of decision trees
 - the local search for optimal tests in nonterminal nodes based on the classical optimality criteria is embedded into the evolutionary search process
- Even preliminary results show that such a hybridization is profitable and improves the evolutionary induction
- The presented approach is still under development:
 - the influence of the local search operator on the performance must be studied in more details
 - additional optimality criteria (e.g. *TwoingRule*) are planned
- For data mining application of evolutionary algorithms there is always a strong motivation for speeding them up:
 - EA are well suited for parallel architecture => we are reimplementing the GDT system in a distributed environment