Mortality Problem for 2 × 2 Integer Matrices

Claudia Nuccio, Emanuele Rodaro

Dipartimanto di Matematica Politecnico di Milano

January 21, 2008

The Mortality Problem

$$\mathbb{K} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$$

 $M(n, \mathbb{K})$ set of $n \times n$ matrices with entries in \mathbb{K}

Mortality problem [$Mort_{\mathbb{K}}(n)$]

- ▶ Instance: a finite set $F \subseteq M(n, \mathbb{K})$.
- ▶ Question: $\underline{0} \in \langle F \rangle$?

- ► The mortality problem is decidable for any set of row-monomial matrices over ℚ (A. Lisitsa, I. Potapov)
- ► $Mort_{\mathbb{Z}}(3)$ is undecidable (M.S. Paterson).
- ▶ Open problem: is $Mort_{\mathbb{Z}}(2)$ decidable?

The Mortality Problem

$$\mathbb{K} \in \{\mathbb{Z}, \mathbb{Q}, \mathbb{R}\}$$

 $M(n, \mathbb{K})$ set of $n \times n$ matrices with entries in \mathbb{K}

Mortality problem [$Mort_{\mathbb{K}}(n)$]

- ▶ Instance: a finite set $F \subseteq M(n, \mathbb{K})$.
- ▶ Question: $\underline{0} \in \langle F \rangle$?

- ► The mortality problem is decidable for any set of row-monomial matrices over Q (A. Lisitsa, I. Potapov).
- ▶ $Mort_{\mathbb{Z}}(3)$ is undecidable (M.S. Paterson).
- ▶ Open problem: is $Mort_{\mathbb{Z}}(2)$ decidable?

Reduction of $Mort_{\mathbb{Z}}(2)$ to Vector Reachability Problem

Let $F = \{S_1, \dots, S_k, R_1, \dots, R_n\}$, where R_i are invertible and S_j are not invertible.

Lemma (O. Bournez, M. Branicky)

 $\underline{0} \in \langle F \rangle$ iff there exist $i, j \in \{1, \dots, k\}, K \in \langle R_1, \dots, R_n \rangle$ such that

$$S_jKS_i=\underline{0}.$$

$$\blacktriangleright \ker(S_i) = \langle k_i \rangle, \operatorname{Im}(S_i) = \langle \iota_i \rangle$$

Reduced problem

Check if there exist $i, j \in \{1, ..., k\}$, $K \in \langle R_1, ..., R_n \rangle$ such that

$$K\iota_i^T \in ker(S_i).$$

Reduction of $Mort_{\mathbb{Z}}(2)$ to Vector Reachability Problem

Let $F = \{S_1, \dots, S_k, R_1, \dots, R_n\}$, where R_i are invertible and S_j are not invertible.

Lemma (O. Bournez, M. Branicky)

 $\underline{0} \in \langle F \rangle$ iff there exist $i, j \in \{1, \dots, k\}, K \in \langle R_1, \dots, R_n \rangle$ such that

$$S_jKS_i=\underline{0}.$$

$$\blacktriangleright$$
 ker $(S_i) = \langle k_i \rangle$, $Im(S_i) = \langle \iota_i \rangle$

Reduced problem

Check if there exist $i, j \in \{1, ..., k\}$, $K \in \langle R_1, ..., R_n \rangle$ such that

$$K\iota_i^T \in ker(S_i).$$

Reduction of $Mort_{\mathbb{Z}}(2)$ to Vector Reachability Problem

Let $F = \{S_1, \dots, S_k, R_1, \dots, R_n\}$, where R_i are invertible and S_j are not invertible.

Lemma (O. Bournez, M. Branicky)

 $\underline{0} \in \langle F \rangle$ iff there exist $i, j \in \{1, \dots, k\}, K \in \langle R_1, \dots, R_n \rangle$ such that

$$S_jKS_i=\underline{0}.$$

 $\blacktriangleright \ker(S_i) = \langle k_i \rangle, \operatorname{Im}(S_i) = \langle \iota_i \rangle$

Reduced problem

Check if there exist $i, j \in \{1, ..., k\}$, $K \in \langle R_1, ..., R_n \rangle$ such that

$$K\iota_i^T \in ker(S_j)$$
.

Our Contribution

▶ Considered case: $\{R_1, ..., R_n\} \subseteq GL(2, \mathbb{Z})$.

▶ We prove that in this case $Mort_{\mathbb{Z}}(2)$ is decidable.

Reduction (1)

Remark

- ▶ $\iota_i = (x, y), gcd(x, y) = 1$
- $k_i = (x', y'), gcd(x', y') = 1$

From this fact and from $K \in GL(2,\mathbb{Z})$ it follows

Lemma

Let
$$K \in \langle R_1, \dots, R_n \rangle$$
, $i, j \in \{1, \dots, k\}$. Then
$$K\iota_i^T \in \ker(S_i) \text{ iff } K\iota_i^T = \pm k_i^T.$$

Reduction (2)

Remark

- Let $\iota_i = (x, y) \in \mathbb{Z}^2$ with gcd(x, y) = 1. Then there exists $U \in GL(2, \mathbb{Z})$ such that $U(1, 0)^T = \iota_i^T$.
- ▶ Checking if there exists $K \in \langle R_1, \dots, R_n \rangle$ such that $K\iota_i^T = \pm k_j^T$ is equivalent to the problem of checking whether there exists $U^{-1}KU \in \langle U^{-1}R_1U, \dots, U^{-1}R_nU \rangle$ such that $U^{-1}KU(1,0)^T = \pm U^{-1}k_j^T$.

Reduced problem

Does there exist $K' \in \langle R'_1, \dots, R'_n \rangle$ such that

$$K'(1,0)^T = \pm (a,b)^T$$

with gcd(a, b) = 1?

Reduction (2)

Remark

- Let $\iota_i = (x, y) \in \mathbb{Z}^2$ with gcd(x, y) = 1. Then there exists $U \in GL(2, \mathbb{Z})$ such that $U(1, 0)^T = \iota_i^T$.
- ▶ Checking if there exists $K \in \langle R_1, \dots, R_n \rangle$ such that $K\iota_i^T = \pm k_j^T$ is equivalent to the problem of checking whether there exists $U^{-1}KU \in \langle U^{-1}R_1U, \dots, U^{-1}R_nU \rangle$ such that $U^{-1}KU(1,0)^T = \pm U^{-1}k_j^T$.

Reduced problem

Does there exist $K' \in \langle R'_1, \dots, R'_n \rangle$ such that

$$K'(1,0)^T = \pm (a,b)^T$$

with gcd(a, b) = 1?

Reduction (2)

Remark

- Let $\iota_i = (x, y) \in \mathbb{Z}^2$ with gcd(x, y) = 1. Then there exists $U \in GL(2, \mathbb{Z})$ such that $U(1, 0)^T = \iota_i^T$.
- ▶ Checking if there exists $K \in \langle R_1, \dots, R_n \rangle$ such that $K\iota_i^T = \pm k_j^T$ is equivalent to the problem of checking whether there exists $U^{-1}KU \in \langle U^{-1}R_1U, \dots, U^{-1}R_nU \rangle$ such that $U^{-1}KU(1,0)^T = \pm U^{-1}k_j^T$.

Reduced problem

Does there exist $K' \in \langle R'_1, \dots, R'_n \rangle$ such that

$$K'(1,0)^T = \pm (a,b)^T$$

with gcd(a, b) = 1?

Reduction (3)

Proposition

Let $a, b \in \mathbb{Z}$ be relative prime. Then $K \in GL(2, \mathbb{Z})$ maps $(1, 0)^T$ to $(a, b)^T$ if and only if K is of the form AT^{λ} where $\lambda \in \mathbb{Z}$,

$$T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

and

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 or $A = \begin{pmatrix} a & -c \\ b & -d \end{pmatrix}$

with c, d integers satisfying ad - bc = 1.

Reduced problem

Does there exist an integer λ such that

$$AT^{\lambda} \in \langle R'_1, \dots, R'_n \rangle$$
?

Reduction (3)

Proposition

Let $a, b \in \mathbb{Z}$ be relative prime. Then $K \in GL(2, \mathbb{Z})$ maps $(1, 0)^T$ to $(a, b)^T$ if and only if K is of the form AT^{λ} where $\lambda \in \mathbb{Z}$,

$$T = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right)$$

and

$$A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$
 or $A = \begin{pmatrix} a & -c \\ b & -d \end{pmatrix}$

with c, d integers satisfying ad - bc = 1.

Reduced problem

Does there exist an integer λ such that

$$AT^{\lambda} \in \langle R'_1, \dots, R'_n \rangle$$
?

Our main result

- ▶ $M \simeq \Sigma^*/\equiv$ finitely presented monoid.
- ▶ Q is a <u>rational subset</u> of M if there exists a finite automaton A with input alphabet Σ such that $x \in Q$ if and only if there exists a word w in the language recognized by A with $x = [w]_{\equiv}$.

Theorem

Given a rational subset Q of matrices in $M(2,\mathbb{Z})$ and a matrix $A \in GL(2,\mathbb{Z})$, it is recursively decidable whether or not

$$\{AT^m \mid m \in \mathbb{Z}\} \cap Q \neq \emptyset$$

where
$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
.

Proof of Theorem 1/4

Let $\mathcal{R}(X_1,\ldots,X_n)$ be a rational expression such that $Q=\varphi(\mathcal{R}(X_1,\ldots,X_n))$, where φ assigns a matrix to each symbol X_i . We have to check whether or not

$$\{AT^{m} \mid m \in \mathbb{Z}\} \cap \varphi(\mathcal{R}(X_{1}, \dots, X_{n})) = \emptyset$$
 (1)

► Claim 1: A = I. If X is a new symbol and we extend φ so that $\varphi(X) = A^{-1}$, then the condition (1) is equivalent to the condition

$$\{T^m \mid m \in \mathbb{Z}\} \cap \varphi(X \cdot \mathcal{R}(X_1, \dots, X_n)) = \emptyset.$$

Proof of Theorem 1/4

Let $\mathcal{R}(X_1,\ldots,X_n)$ be a rational expression such that $Q=\varphi(\mathcal{R}(X_1,\ldots,X_n))$, where φ assigns a matrix to each symbol X_i .

We have to check whether or not

$$\{AT^{m} \mid m \in \mathbb{Z}\} \cap \varphi(\mathcal{R}(X_{1}, \dots, X_{n})) = \emptyset$$
 (1)

▶ Claim 1: A = I. If X is a new symbol and we extend φ so that $\varphi(X) = A^{-1}$, then the condition (1) is equivalent to the condition

$$\{T^m \mid m \in \mathbb{Z}\} \cap \varphi(X \cdot \mathcal{R}(X_1, \dots, X_n)) = \emptyset.$$

Proof of Theorem 2/4

We have to check whether or not

$$\{T^m \mid m \in \mathbb{Z}\} \cap \varphi(\mathcal{R}(X_1, \dots, X_n)) = \emptyset$$
 (2)

- ▶ Claim 2: the determinant of all X_i 's is equal to ± 1 (since $det(T^m) = 1$).
- **Claim 3:** the determinant of all X_i 's is equal to 1.

So we can suppose that $\varphi(\mathcal{R}(X_1,\ldots,X_n))\subseteq SL(2,\mathbb{Z})$.

Intersection Of Rational Subsets

$$SL(2,\mathbb{Z})/\{I,-I\} = PSL(2,\mathbb{Z}) \simeq \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z},$$

Proposition

Let G be a group such that $G \simeq \mathbb{Z}/p_1\mathbb{Z} * \ldots * \mathbb{Z}/p_n\mathbb{Z}$. Let A, B be two automata that recognize respectively two rational subsets $H, K \subseteq G$. Then it is recursively decidable whether or not $H \cap K \neq \emptyset$.

So we can verify whether the image of

$$\{T^m \mid m \in \mathbb{Z}\} \cap \varphi(\mathcal{R})$$

in $PSL(2,\mathbb{Z})$ is non-empty.

Intersection Of Rational Subsets

$$SL(2,\mathbb{Z})/\{I,-I\} = PSL(2,\mathbb{Z}) \simeq \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z},$$

Proposition

Let G be a group such that $G \simeq \mathbb{Z}/p_1\mathbb{Z} * \ldots * \mathbb{Z}/p_n\mathbb{Z}$. Let A, \mathcal{B} be two automata that recognize respectively two rational subsets $H, K \subseteq G$. Then it is recursively decidable whether or not $H \cap K \neq \emptyset$.

So we can verify whether the image of

$$\{T^m \mid m \in \mathbb{Z}\} \cap \varphi(\mathcal{R})$$

in $PSL(2,\mathbb{Z})$ is non-empty.

Intersection Of Rational Subsets

$$SL(2,\mathbb{Z})/\{I,-I\} = PSL(2,\mathbb{Z}) \simeq \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z},$$

Proposition

Let G be a group such that $G \simeq \mathbb{Z}/p_1\mathbb{Z} * \ldots * \mathbb{Z}/p_n\mathbb{Z}$. Let A, \mathcal{B} be two automata that recognize respectively two rational subsets $H, K \subseteq G$. Then it is recursively decidable whether or not $H \cap K \neq \emptyset$.

So we can verify whether the image of

$$\{T^m \mid m \in \mathbb{Z}\} \cap \varphi(\mathcal{R})$$

in $PSL(2,\mathbb{Z})$ is non-empty.

Proof of Theorem 3/4

$$T^m = \left(\begin{array}{cc} 1 & m \\ 0 & 1 \end{array}\right)$$

Let $\psi: SL(2,\mathbb{Z}) \to M(2,\mathbb{Z}/3\mathbb{Z})$ be the morphism which puts the entries of a matrix module 3. Then

$$\left\{ T^m \mid m \in \mathbb{Z} \right\} \subseteq H = \\
 = \left\{ A \in SL(2, \mathbb{Z}) \mid \psi(A) = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \mod 3, i = 0, 1, 2 \right\}$$

while $-T^m \notin H$.

Proof of Theorem 4/4

The set

$$P = \left\{ W \in \{X_1, \dots, X_n\}^* | \psi(\varphi(W)) = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \mod 3, \\ i = 0, 1, 2 \right\}$$

is rational.

$$\{T^m \mid m \in \mathbb{Z}\} \cap \varphi(\mathcal{R}(X_1, \dots, X_n)) = \emptyset$$
iff
$$iff$$

$$m \mid m \in \mathbb{Z}\} \cap (\varphi(\mathcal{R}(X_1, \dots, X_n) \cap P)) = \emptyset$$

Proof of Theorem 4/4

The set

$$P = \left\{ W \in \{X_1, \dots, X_n\}^* | \psi(\varphi(W)) = \begin{pmatrix} 1 & i \\ 0 & 1 \end{pmatrix} \mod 3, \\ i = 0, 1, 2 \right\}$$

is rational.

$$\{T^m \mid m \in \mathbb{Z}\} \cap \varphi(\mathcal{R}(X_1, \dots, X_n)) = \emptyset$$
iff
 $\{T^m \mid m \in \mathbb{Z}\} \cap (\varphi(\mathcal{R}(X_1, \dots, X_n) \cap P)) = \emptyset.$

Open problem

The mortality problem is decidable for any set of $n \times n$ integer matrices whose determinants are $0, \pm 1$?