A USEFUL BOUNDED
BESOURCE FUNC O NS
LANGUAGE

‘ » MIKE BURRELL (MBURRELERUWO.CA)
ME MARK PALEY (PALEY@CSD.UWO.CA)
JAMIE ANDREWS (ANPREWS@CSD.UWO.CA)

UNIVERSITY OF WESTERN ONTARIO (CANADA)

SOFSEM 2008

mailto:mburrel@uwo.ca
mailto:mburrel@uwo.ca
mailto:daley@csd.uwo.ca
mailto:daley@csd.uwo.ca
mailto:andrews@csd.uwo.ca
mailto:andrews@csd.uwo.ca

- [Y-CRITICAL SOFTWAR

MEDICAL EQRUPMENT

NUCLEAR POWER PLANT
CONTROLS

AUTOMOTIVE CONTROLS

INDUSTRIAL CONTROLLERS

FUNCTIONAL PROGRAMMING

NO VARIABLES

NO SIBDE-EFFECTS

NO STATEMENTS

“ALGEBRAIC” DATA
STRUCTURES

FUNCTIONAL PROGRAMMING

data Bool
= True
| False
data List a
= Nil
| Cons a (List q)

NO VARIABLES

NO SIBDE-EFFECTS

NO STATEMENTS

“ALGEBRAIC” DATA
STRUCTURES

FUNCTIONAL PROGRAMMING

data Bool
= True
| False
data List a
= Nil
| Cons a (List q)

empty :: (List a) — Bool
empty list = list {

Nil = True;

Cons _ _ — False;

}

;mﬂ:rz:rr‘r*r-v—r—-—f S ————

NO VARIABLES

NO SIBDE-EFFECTS

NO STATEMENTS

“ALGEBRAIC” DATA
STRUCTURES

R T S B S

FUNCTIONAL IN STYLE

NOT TURING-COMPLETE

NO GENERAL RECURSION

CATAMORPHISM CONSTRULCT

GENERALIZED FOLDS

gyx=ifx<y
theny + gy (x + 1)
else h [y - x)

hx=g(f x) x

fx=x*x

gmy

theny + gy (x + 1) gyx=fy+x
else h y - x)

h/ hx=g(f x) x

X =g (f x) x

f x=x*x

gy x=if XX y
theny +gvy (x + 1) gyx=fy+x

else h y - x)
hx=g(f x) x

h'x=g(f x) x

f x=x*x

QQY
theny +gvy (x + 1) gy x=Ffty+x

else h y - x)
hx=g(f x) x
h'x=g(f x) x

data Signal
= Stop
| Go

data Vehicle
= Train TrainStop TrainStop Nat

TrainStop is anything that can be compared
for equality.

PATA STRUCTURES

data Signal
= Stop
| Go

data Vehicle
= Train TrainStop TrainStop Nat

TrainStop is anything that can be compared
for equality.

PATA STRUCTURES

data Vehicle
= Train TrainStop

TrainStop Nat

isApproaching :: Vehicle — TrainStop — Bool
isApproaching train stop = train {

Train from to wait — to == stop;

}

FUNCTIONS

pickTrain :: List Vehicle — Maybe Vehicle
pickTrain trains = second (trains {
Nil — (0, Nothing); Maybe a
Cons tts — t{ = Nothing
Train _ _ tWait — | Just a
let (wait,) = @ts; in

if tWait >= wait
then (tWait, Just)
else @fts;

FUNCTIONS

nextToGoAtStop trains stop =
let trainsAtStop = trains {
Nil — Nil;
Cons t ts — if isApproaching t stop
then Cons t @ts
else @ts;

}; in
if empty trainsAtStop
then Nothing

else pickTrain trainsAtStop

]

FUNCTIONS

setSignal trains from fo = % /‘ ‘
(nextToGoAtStop >® \
trains to) { / { \

Nothing — Stop; |)
Justt — t{

Train s — if s == from

then Go
else Stop;

FUNCTIONS

CATAMORPHISMS

PATTERN MATCHING

ITERATING OVER LISTS

ITERATING OVER NATURAL NUMBERS
fibmE=EnE1
[DE= (1 1) Sl == (R
'31—(1 1) Succ p — it n == 1" then s
ER=tlet: (k1. x2) = fibi (n 2 1) else let (x1, x2) = @p; in
(x2, x1 + x2) (x2, x1 + x2):

j

fib n = second (fib' n)
(TERATING OVER ANY RECURSIVE DATA TY'PE

data Tree = Leaf Nat | Branch Tree Tree

{

leaf x — x * x;
Branch left right — @left + @right;

]

data Tree = Leaf Nat | Branch Tree Tree

{

leaf x — x * x;
Branch left right — @left + @right;
j

©

data Tree = Leaf Nat | Branch Tree Tree

{

leaf x = x * x;
Branch left right — @left + @right;

]

©

data Tree = Leaf Nat | Branch Tree Tree

{

leaf x = x * x;
Branch left right — @left + @right;
j

&

data Tree = Leaf Nat | Branch Tree Tree

{

leaf x — x * x;
Branch left right & @left + @right;

data Tree = Leaf Nat | Branch Tree Tree

{

leaf x — x * x;
Branch left right & @left + @right;

data Tree = Leaf Nat | Branch Tree Tree

{

leaf x — x * x;
Branch left right & @left + @right;

]

[O\ |;'>9+36=45
). (o)

WHAT'S

CONCRETE SYNTAX

OPERATIONAL SEMANTICS

(cool) PROOF OF TERMINATION

ACTUALLY PRIMITIVE RECURSIVE

WHAT'S COMING

(STABLE) INTERPRETER/COMPILER

ALGORITHMS FOR BOUNDS ON TIME AND SPACE (AND
MORE)

EXTENSIONS TO CA OR OTHER LANGUAGES

MORE THEORETICAL WORK

THANK YOU

