
A USEFUL BOUNDED
RESOURCE FUNCTIONAL

LANGUAGE
MIKE BURRELL (MBURREL@UWO.CA)
MARK DALEY (DALEY@CSD.UWO.CA)

JAMIE ANDREWS (ANDREWS@CSD.UWO.CA)

UNIVERSITY OF WESTERN ONTARIO (CANADA)

SOFSEM 2008

ME

mailto:mburrel@uwo.ca
mailto:mburrel@uwo.ca
mailto:daley@csd.uwo.ca
mailto:daley@csd.uwo.ca
mailto:andrews@csd.uwo.ca
mailto:andrews@csd.uwo.ca

SAFETY-CRITICAL SOFTWARE

MEDICAL EQUIPMENT

NUCLEAR POWER PLANT
CONTROLS

AUTOMOTIVE CONTROLS

INDUSTRIAL CONTROLLERS

FUNCTIONAL PROGRAMMING

NO VARIABLES

NO SIDE-EFFECTS

NO STATEMENTS

“ALGEBRAIC” DATA
STRUCTURES

FUNCTIONAL PROGRAMMING

NO VARIABLES

NO SIDE-EFFECTS

NO STATEMENTS

“ALGEBRAIC” DATA
STRUCTURES

data Bool
 = True
 | False
data List a
 = Nil
 | Cons a (List a)

FUNCTIONAL PROGRAMMING

NO VARIABLES

NO SIDE-EFFECTS

NO STATEMENTS

“ALGEBRAIC” DATA
STRUCTURES

data Bool
 = True
 | False
data List a
 = Nil
 | Cons a (List a)

empty :: (List a) → Bool
empty list = list {
 Nil → True;
 Cons _ _ → False;
}

CA

FUNCTIONAL IN STYLE

NOT TURING-COMPLETE

NO GENERAL RECURSION

CATAMORPHISM CONSTRUCT

GENERALIZED FOLDS

f x = x * x

g y x = if x < y
 then y + g y (x + 1)
 else h (y - x)

h x = g (f x) x

f x = x * x

g y x = f y + x

h x = g (f x) x✘ ✔

f x = x * x

g y x = if x < y
 then y + g y (x + 1)
 else h (y - x)

h x = g (f x) x

f x = x * x

g y x = f y + x

h x = g (f x) x✘ ✔

f x = x * x

g y x = if x < y
 then y + g y (x + 1)
 else h (y - x)

h x = g (f x) x

f x = x * x

g y x = f y + x

h x = g (f x) x✘ ✔

f x = x * x

g y x = if x < y
 then y + g y (x + 1)
 else h (y - x)

h x = g (f x) x

f x = x * x

g y x = f y + x

h x = g (f x) x✘ ✔

DATA STRUCTURES

data Signal
 = Stop
 | Go

TrainStop is anything that can be compared
for equality.

data Vehicle
 = Train TrainStop TrainStop Nat

DATA STRUCTURES

data Signal
 = Stop
 | Go

TrainStop is anything that can be compared
for equality.

data Vehicle
 = Train TrainStop TrainStop Nat

FUNCTIONS

isApproaching :: Vehicle → TrainStop → Bool
isApproaching train stop = train {
 Train from to wait → to == stop;
}

data Vehicle
 = Train TrainStop
 TrainStop Nat

FUNCTIONS

pickTrain :: List Vehicle → Maybe Vehicle
pickTrain trains = second (trains {
 Nil → (0, Nothing);
 Cons t ts → t {
 Train _ _ tWait →
 let (wait, _) = @ts; in
 if tWait >= wait
 then (tWait, Just t)
 else @ts;
 };
})

Maybe a
 = Nothing
 | Just a

FUNCTIONS

nextToGoAtStop trains stop =
 let trainsAtStop = trains {
 Nil → Nil;
 Cons t ts → if isApproaching t stop
 then Cons t @ts
 else @ts;
 }; in
 if empty trainsAtStop
 then Nothing
 else pickTrain trainsAtStop
 }

FUNCTIONS

setSignal trains from to =
 (nextToGoAtStop
 trains to) {
 Nothing → Stop;
 Just t → t {
 Train s _ _ → if s == from
 then Go
 else Stop;
 };
 }

CATAMORPHISMS

PATTERN MATCHING

ITERATING OVER LISTS

ITERATING OVER NATURAL NUMBERS

ITERATING OVER ANY RECURSIVE DATA TYPE

fib’ 0 = (1, 1)
fib’ 1 = (1, 1)
fib’ n = let (x1, x2) = fib’ (n - 1); in
 (x2, x1 + x2)

fib’ n = n {
 Zero → (1, 1);
 Succ p → if n == 1 then (1, 1)
 else let (x1, x2) = @p; in
 (x2, x1 + x2);
}

fib n = second (fib’ n)

data Tree = Leaf Nat | Branch Tree Tree
{
 Leaf x → x * x;
 Branch left right → @left + @right;
}

data Tree = Leaf Nat | Branch Tree Tree
{
 Leaf x → x * x;
 Branch left right → @left + @right;
}

3

data Tree = Leaf Nat | Branch Tree Tree
{
 Leaf x → x * x;
 Branch left right → @left + @right;
}

3

data Tree = Leaf Nat | Branch Tree Tree
{
 Leaf x → x * x;
 Branch left right → @left + @right;
}

3 9

data Tree = Leaf Nat | Branch Tree Tree
{
 Leaf x → x * x;
 Branch left right → @left + @right;
}

3 6

data Tree = Leaf Nat | Branch Tree Tree
{
 Leaf x → x * x;
 Branch left right → @left + @right;
}

3 6

data Tree = Leaf Nat | Branch Tree Tree
{
 Leaf x → x * x;
 Branch left right → @left + @right;
}

3 6

9 + 36 = 45

WHAT’S DONE

CONCRETE SYNTAX

OPERATIONAL SEMANTICS

(COOL) PROOF OF TERMINATION

ACTUALLY PRIMITIVE RECURSIVE

WHAT’S COMING

(STABLE) INTERPRETER/COMPILER

ALGORITHMS FOR BOUNDS ON TIME AND SPACE (AND
MORE)

EXTENSIONS TO CA OR OTHER LANGUAGES

MORE THEORETICAL WORK

THANK YOU

