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FUNCTIONAL PROGRAMMING

data Bool
= True
| False
data List a
= Nil
| Cons a (List q)

empty :: (List a) — Bool
empty list = list {

Nil = True;

Cons _ _ — False;

}
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NO VARIABLES

NO SIBDE-EFFECTS

NO STATEMENTS

“ALGEBRAIC” DATA
STRUCTURES
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FUNCTIONAL IN STYLE

NOT TURING-COMPLETE

NO GENERAL RECURSION

CATAMORPHISM CONSTRULCT

GENERALIZED FOLDS
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data Signal
= Stop
| Go

data Vehicle
= Train TrainStop TrainStop Nat

TrainStop is anything that can be compared
for equality.

PATA STRUCTURES




data Signal
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data Vehicle
= Train TrainStop

TrainStop Nat

isApproaching :: Vehicle — TrainStop — Bool
isApproaching train stop = train {

Train from to wait — to == stop;

}

FUNCTIONS




pickTrain :: List Vehicle — Maybe Vehicle
pickTrain trains = second (trains {
Nil — (0, Nothing); Maybe a
Cons tts — t{ = Nothing
Train _ _ tWait — | Just a
let (wait, ) = @ts; in

if tWait >= wait
then (tWait, Just )
else @fts;

FUNCTIONS




nextToGoAtStop trains stop =
let trainsAtStop = trains {
Nil — Nil;
Cons t ts — if isApproaching t stop
then Cons t @ts
else @ts;

}; in
if empty trainsAtStop
then Nothing

else pickTrain trainsAtStop

]

FUNCTIONS




setSignal trains from fo = % /‘ ‘
(nextToGoAtStop >® \
trains to) { / { \

Nothing — Stop; | )
Justt — t{

Train s — if s == from

then Go
else Stop;

FUNCTIONS




CATAMORPHISMS

PATTERN MATCHING

ITERATING OVER LISTS

ITERATING OVER NATURAL NUMBERS
fibmE=EnE1
[DE= (1 1) Sl == (R
'31—(1 1) Succ p — it n == 1" then s
ER=tlet: (k1. x2) = fibi (n 2 1) else let (x1, x2) = @p; in
(x2, x1 + x2) (x2, x1 + x2):

j

fib n = second (fib' n)
(TERATING OVER ANY RECURSIVE DATA TY'PE




data Tree = Leaf Nat | Branch Tree Tree

{

leaf x — x * x;
Branch left right — @left + @right;

]
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data Tree = Leaf Nat | Branch Tree Tree

{

leaf x — x * x;
Branch left right & @left + @right;

]
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WHAT'S

CONCRETE SYNTAX

OPERATIONAL SEMANTICS

(cool) PROOF OF TERMINATION

ACTUALLY PRIMITIVE RECURSIVE




WHAT'S COMING

(STABLE) INTERPRETER/COMPILER

ALGORITHMS FOR BOUNDS ON TIME AND SPACE (AND
MORE)

EXTENSIONS TO CA OR OTHER LANGUAGES

MORE THEORETICAL WORK




THANK YOU




