Optimal Orientation On-line

Lech Duraj Grzegorz Gutowski

Theoretical Computer Science Department Jagiellonian University

SOFSEM 2008

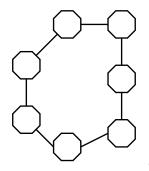
æ

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Graph Orientation Off-line case On-line case

Building a one-way network

Imagine a network consisting of nodes and some links between them. These links mark pairs which can be connected.

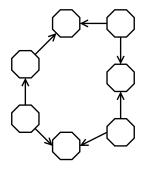


< ∃⇒

Graph Orientation Off-line case On-line case

Building a one-way network

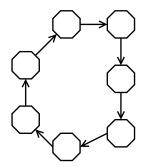
Imagine a network consisting of nodes and some links between them. These links mark pairs which can be connected. However, only one-way connections are available. We must build the best possible network, i.e. the one which allows the easiest communication.



Graph Orientation Off-line case On-line case

Quality of solution

Some networks are clearly better then the others.



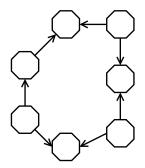


Image: A matrix

A B F A B F

How to measure the quality of a network?

크

Graph Orientation Off-line case On-line case

Quality measures

• *Reachable pairs problem*: maximize the number of pairs (u, v) s.t. v is reachable from u.

æ

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Graph Orientation Off-line case On-line case

Quality measures

- *Reachable pairs problem*: maximize the number of pairs (u, v) s.t. *v* is reachable from *u*.
- Average connectivity problem: maximize the sum of λ(u, v) (number of disjoint paths from u to v) over all pairs of vertices.

(日)

Graph Orientatior Off-line case On-line case

Off-line results

• For trees, reachable pairs and average connectivity are the same problem.

æ

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

Graph Orientation Off-line case On-line case

Off-line results

- For trees, reachable pairs and average connectivity are the same problem.
- There is a polynomial algorithm solving this case [Henning, Oellermann '04]

크

(日)

Graph Orientation Off-line case On-line case

Off-line results

- For trees, reachable pairs and average connectivity are the same problem.
- There is a polynomial algorithm solving this case [Henning, Oellermann '04]
- The optimal solution gives $\Theta(n^2)$ connected pairs.

Graph Orientation Off-line case On-line case

Off-line results

- For trees, reachable pairs and average connectivity are the same problem.
- There is a polynomial algorithm solving this case [Henning, Oellermann '04]
- The optimal solution gives $\Theta(n^2)$ connected pairs.
- For general graphs, reachable pairs problem can be solved using a similar algorithm, whereas average connectivity problem is NP-complete.

Image: A image: A

Graph Orientation Off-line case On-line case

On-line game

Now, imagine a game between two players: Spoiler and Algorithm. The board is a growing graph *G*.

Spoiler

Algorithm

イロト イヨト イヨト イヨト

크

Graph Orientation Off-line case On-line case

On-line game

Now, imagine a game between two players: Spoiler and Algorithm. The board is a growing graph *G*.

Spoiler

Algorithm

adds a vertex with edges

A (B) > A (B) > A (B) >

Graph Orientation Off-line case On-line case

On-line game

Now, imagine a game between two players: Spoiler and Algorithm. The board is a growing graph *G*.

Spoiler

adds a vertex with edges

Algorithm

o directs new edges

Graph Orientation Off-line case On-line case

On-line game

Now, imagine a game between two players: Spoiler and Algorithm. The board is a growing graph *G*.

Spoiler

adds a vertex with edges

Algorithm

o directs new edges

< 同 > < 三 > < 三 >

 decisions are permanent

Graph Orientation Off-line case On-line case

On-line game

Now, imagine a game between two players: Spoiler and Algorithm. The board is a growing graph *G*.

Spoiler

• adds a vertex with edges Constraint: graph is connected

Algorithm

o directs new edges

 decisions are permanent

Graph Orientation Off-line case On-line case

On-line game

Now, imagine a game between two players: Spoiler and Algorithm. The board is a growing graph *G*.

Spoiler

• adds a vertex with edges *Constraint*: graph is connected *Goal*: minimize the number of connected pairs

Algorithm

- o directs new edges
- decisions are permanent

Goal: maximize the number of connected pairs

A (10) A (10) A (10)

Graph Orientation Off-line case On-line case

Sample game

$\bigcirc .2..\bigcirc$

Spoiler

starts with a single edge

Optimal score 1

Algorithm score

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

0+?

Graph Orientation Off-line case On-line case

Sample game

Algorithm

directs the edge

Optimal score

1

Algorithm score

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

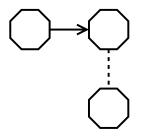
1

æ

Lech Duraj, Grzegorz Gutowski Optimal Orientation On-line

Graph Orientation Off-line case On-line case

Sample game



adds another edge

Optimal score

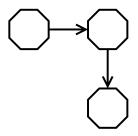
3

Algorithm score

1+?

Graph Orientation Off-line case On-line case

Sample game



Algorithm

directs the edge

Optimal score

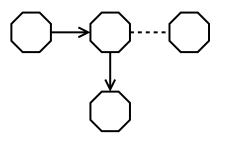
3

Algorithm score

3

Graph Orientation Off-line case On-line case

Sample game



Spoiler

adds another edge

Optimal score

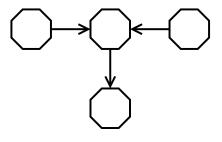
5

Algorithm score

3+?

Graph Orientation Off-line case On-line case

Sample game



Algorithm

directs the edge

Optimal score

5

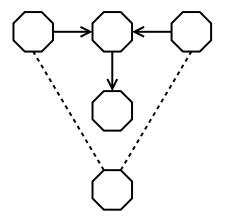
Algorithm score

<ロ> <同> <同> < 同> < 同> < 同> 、

5

Graph Orientation Off-line case On-line case

Sample game



Spoiler

adds two edges

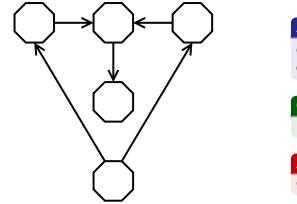
Optimal score

Algorithm score 5+?

▲□ → ▲ □ → ▲ □ →

Graph Orientation Off-line case On-line case

Sample game



Algorithm

can't achieve optimum

Optimal score 16

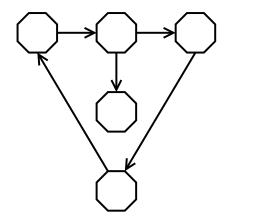
Algorithm score

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

9

Graph Orientation Off-line case On-line case

Sample game



Spoiler

Ha! Looser!

Optimal score 16

Algorithm score

<ロ> <同> <同> < 同> < 同> < 同> 、

9

Graph Orientatior Off-line case On-line case

On-line results

Questions:

• What is the optimal strategy for both players?

æ

・ロト ・ 日 ・ ・ 回 ・ ・ 日 ・ ・

Graph Orientation Off-line case On-line case

On-line results

Questions:

- What is the optimal strategy for both players?
- In a graph of *n* vertices, what will be the outcome of such game, assuming both players play optimally?

(日)

Graph Orientation Off-line case On-line case

On-line results

Questions:

- What is the optimal strategy for both players?
- In a graph of *n* vertices, what will be the outcome of such game, assuming both players play optimally?

Answers:

• A certain Algorithm player can guarantee himself at least $\Omega\left(n\frac{\log n}{\log \log n}\right)$ reachable pairs.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Graph Orientation Off-line case On-line case

On-line results

Questions:

- What is the optimal strategy for both players?
- In a graph of *n* vertices, what will be the outcome of such game, assuming both players play optimally?

Answers:

- A certain Algorithm player can guarantee himself at least $\Omega\left(n\frac{\log n}{\log\log n}\right)$ reachable pairs.
- Spoiler has a strategy of giving vertices and edges such that this number will always be bounded by O (n log log n log log n).

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Algorithm Analysis

Greedy Algorithm

Suppose that the graph is a tree. In each round we are given vertex s with one edge (s, t).

크

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Algorithm Analysis

Greedy Algorithm

Suppose that the graph is a tree. In each round we are given vertex s with one edge (s, t).

- *t_{out}* := the number of vertices reachable from *t*
- *t_{in}* := the number of vertices from which *t* is reachable
- Choose direction $s \rightarrow t$ if t_{out} is larger, $t \rightarrow s$ otherwise

(日)

Algorithm Analysis

Sketch of proof

- Let $order(s) = max(t_{out}, t_{in}) + 1$
- The smaller of *t_{out}*, *t_{in}* goes up every time a new vertex is connected to *t*
- A vertex can have at most k children of order k.
- There are at most (k+2)! vertices of order k.

< 同 > < 三 > < 三 >

Algorithm Analysis

Sketch of proof

- Let $order(s) = max(t_{out}, t_{in}) + 1$
- The smaller of *t_{out}*, *t_{in}* goes up every time a new vertex is connected to *t*
- A vertex can have at most k children of order k.
- There are at most (k+2)! vertices of order k.

Corollary: The total number of connected pairs is $\Omega\left(n\frac{\log n}{\log\log n}\right)$.

(日)

Algorithm Analysis

Sketch of proof

- Let $order(s) = max(t_{out}, t_{in}) + 1$
- The smaller of *t_{out}*, *t_{in}* goes up every time a new vertex is connected to *t*
- A vertex can have at most k children of order k.
- There are at most (k+2)! vertices of order k.

Corollary: The total number of connected pairs is $\Omega\left(n\frac{\log n}{\log \log n}\right)$. The same proof works for general graphs.

(日)

Strategy Analysis

Factorial tree Strategy

start with single node of rank 1

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Strategy Analysis

Factorial tree Strategy

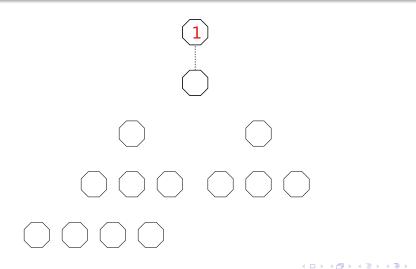
- start with single node of rank 1
- choose a leaf of lowest rank r
- attach r children of rank r + 1

크

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

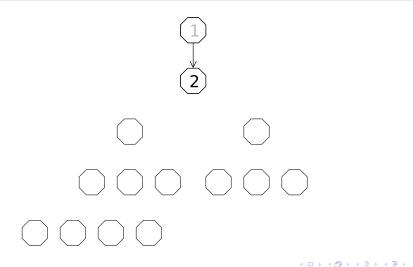
Strategy Analysis

Factorial tree Strategy vs. Greedy Algorithm



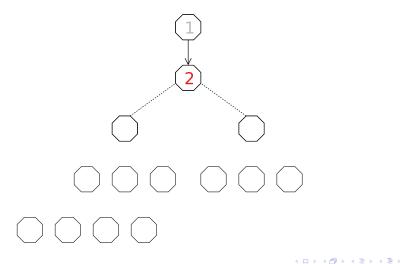
Strategy Analysis

Factorial tree Strategy vs. Greedy Algorithm



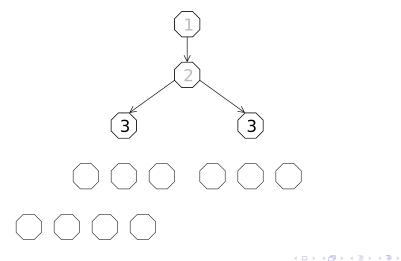
Strategy Analysis

Factorial tree Strategy vs. Greedy Algorithm



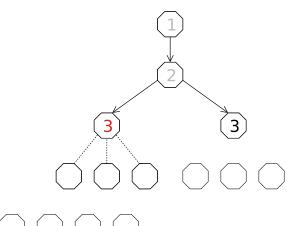
Strategy Analysis

Factorial tree Strategy vs. Greedy Algorithm



Strategy Analysis

Factorial tree Strategy vs. Greedy Algorithm

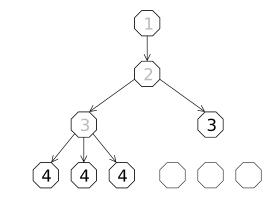


æ

▲□ → ▲ □ → ▲ □ →

Strategy Analysis

Factorial tree Strategy vs. Greedy Algorithm

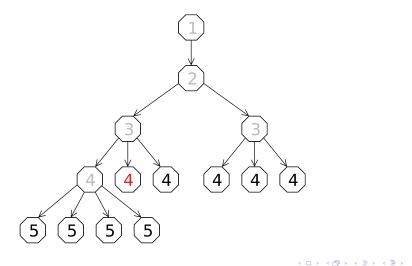


æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

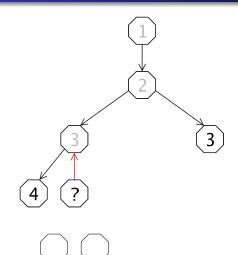
Strategy Analysis

Factorial tree Strategy vs. Greedy Algorithm



Strategy Analysis

Non-greedy opponent

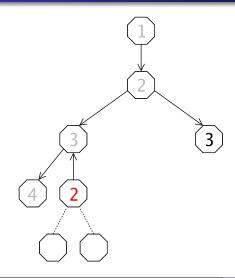


æ

・ロ・ ・ 四・ ・ 回・ ・ 日・

Strategy Analysis

Non-greedy opponent

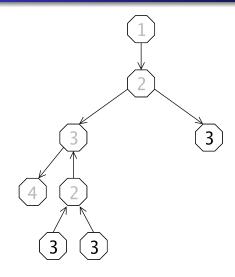


æ

・ロ・ ・ 四・ ・ 回・ ・ 日・

Strategy Analysis

Non-greedy opponent



æ

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

Strategy Analysis

Sketch of proof

- The number of connected pairs is bounded by the sum of ranks
- If there is a vertex of rank r there are at least (r 2)! vertices

크

イロト イヨト イヨト イヨト

Strategy Analysis

Sketch of proof

- The number of connected pairs is bounded by the sum of ranks
- If there is a vertex of rank *r* there are at least (*r* − 2)! vertices

Corollary: The total number of connected pairs is $O\left(n \frac{\log n}{\log \log n}\right)$.

(日)

- Optimal players achieve $\Theta\left(n\frac{\log n}{\log \log n}\right)$ connected pairs
- This is poor, compared to $\Omega(n^2)$ in the off-line case
- In the game defined, Spoiler always should construct a tree

