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Definition: An automaton

An automaton is a triple A = (Q, A, ), where:

@ @ is a finite set of states

@ A is a finite alphabet

@ 0: @ xA— Qis a transition function

Extending d
§:29 x A* — 2@
5(P,aw) = [ J {8(5( w)l,PCQ, acA wecA*
peP

For example, if 6(1,a) =2, §(2,a) =3, §(2,b) =1, 6(3,b) = 2,
then §({1,2}, ab) = {1,2}.
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" Classical” version of synchronization

Let A= (Q,A,0d) be a full, deterministic and strongly connected
automaton. If

dw e A" Vp,qge Qd(p,w)=0d(q,w),

then we say that A is synchronizing, and w is a synchronizing
word. We also say that w synchronizes A.
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Synchronization

" Classical” version of synchronization

Let A= (Q,A,0d) be a full, deterministic and strongly connected
automaton. If

dw e A" Vp,qge Qd(p,w)=0d(q,w),

then we say that A is synchronizing, and w is a synchronizing
word. We also say that w synchronizes A.

If w synchronizes A, then each word uwv (u,v € A*) also does it.
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We say w is a minimal synchronizing word for A, if w synchronizes
A, and for each v synchronizing A we have |v| > |w]|.

| A\

The problem

What are the upper and lower bounds for the length of minimal
synchronizing words for an n-state automaton?
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Lower bound
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A€ SYN(n) = m(A) <

n- —n
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[Lowerbound |

For each n there exists an n-state éern)'/ automaton, that is, an
automaton for which m(A) = (n —1)2. So: M(n) > (n — 1)2.

Theorem - Pin; Klyachko, Rystsov, Spivak
n—n
A€ SYN(n) = m(A) < 5

v

Conclusion

For synchronization in the "classical” case we have

3—/7

6

(n—1)* < M(n) < "
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Definition

Let A be an automaton as above but ¢ is not necessarily a total
function - §(q, a) can be undefined for some states and letters.

How does the synchronization look like?

An automaton A = (Q, A, §) with a non-total § is synchronized by
W = a1ap...a, if each of the sets P; = 6(Q, a;...a;) is well defined
and |Py| = 1.
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Definition

An example

How to synchronize it?
0(Q,a) ={1,2,4}
0({1,2,4}, b) - undefined!
0({1,2,4},a) = {1,2}
6({1,2}, b) = {3}

w = aab.
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Lower and upper bounds

Notation

For partial automata we will use M*(n) in the same meaning as
M(n). M*(n) is the longest word among all minimal synchronizing
words for n-state partial automata.

Theorem (M. lto, K. Shikishima-Tsuji)

For n even 25 +1< /\/I*(n) < om_on—2_ 1.
FOFnOdd3-2nTi3_|_]_<M*(n)<2n_2n72_1.

Theorem (P. Martjugin)

For n =3k M*(n) >3-35 —2
For n = 3k + 1 M*(n) =
For n = 3k +2 M*(n) 3

N

n

w w
w

|

N
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oWolloR o

lower upper-big upper-small
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Definitoin: k-synchronizing automaton
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there exists a k-subset P of Q and w € A*, such that:

e )(P,w) is well-defined
e |[d(P,w)|=1
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Generalization

@ An automaton is a partial one

@ The synchronization can start in an arbitrary subset of Q.

Definitoin: k-synchronizing automaton

An n-state automaton A is k-synchronizing automaton (k < n), if
there exists a k-subset P of Q and w € A*, such that:

e )(P,w) is well-defined
e |[d(P,w)|=1

@ there is no set greater than P with above properties.
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Notation

By M®(n) we denote the longest word among the minimal
synchronizing words for k-synchronizing n-state automata (for
arbitrary k =1,2,..., n).

It seems that...

taking the arbitrary subset of @ as the starting point of the
synchronization process will result in shorter value of the minimal
synchronizing word’s length (we start from the smaller set, so we
have fewer number of combinations of states during the synchr.
process). In other words: it seems that M¥(n) < M*(n).
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but...
it is exactly the opposite! Generalized synchronization causes the
elongation of minimal synchronizing words.

| A\

Why?

In case of classical and " partial-type” synchronization there must
exist a letter a € A such that (-, a) is defined for all g € Q. This
fact prevented to achieve possibly long minimal synchronizing word.
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Main theorem

Let n = 2k. There exists g—synchronizing automaton, for which the
length of minimal synchronizing word is

n+1 n
= - = =2,
v () 2
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Definition

Let n = 2k. There exists 5-synchronizing automaton, for which the
length of minimal synchronizing word is

n+1 n
= - = =2,
v () 2

Comparision with Martjugin results

LRI m(eD [ medeD [ 1QI ] m*(Q) | M°(e) |

8 52 120 22 8746 1 352 065
10 106 455 24 | 19 681 5 200 286
12 241 1708 26 | 39 364 20 058 285
14 484 6 424 28 | 78730 77 558 744

16 970 24 300 30 | 177 145 | 300 540 178
18 2 185 92 367 32 | 354292 | 1166 803 092
20 4 372 352704 || 34 | 708 586 | 4 537 567 631
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What next?

Possible fields of research
@ better lower bound for M*?

@ better lower bound for M<?

@ a nontrivial upper bound for M¥?
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What next?

THE END.
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