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Consider the following decision problem, the tiling problem:

Given a finite set of tiles (say, for example, polygons), is it possible

to tile the infinite plane with copies of the tiles ?

For instance, can one tile the plane with copies of

By a tiling we mean a covering of the plane without overlaps (i.e.

two tiles may only overlap in their boundary).





But there are other tile sets that do not admit any tiling, e.g. the

regular pentagon

does not tile the plane.



So is there an algorithm to tell which tile sets admit a plane tiling ?



So is there an algorithm to tell which tile sets admit a plane tiling ?

R.Berger 1966: No, the tiling problem is undecidable.

R.Berger: Undecidability of the Domino Problem. Memoirs

of the American Mathematical Society 66, 72 pp., 1966.

A simplified version (but based on Berger’s ideas) was given by

R.M.Robinson in 1971.

R.M.Robinson. Undecidability and nonperiodicity for
tilings of the plane. Inventiones Mathematicae 12, 177–209,
1971.



In this talk we present a new, quite different proof.

Why a new proof to an old result ?
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In this talk we present a new, quite different proof.

Why a new proof to an old result ?

• The new proof is simpler. It is based on simple algebra, it is

precise and easy to verify.

• The same technique works in other set-ups as well. In particular,

the same approach shows that the tiling problem on the

hyperbolic plane is undecidable. This problem was posed in

Robinson’s 1971 paper, and investigated later in more depth in

R.M.Robinson: Undecidable tiling problems in the
hyperbolic plane. Inventiones Mathematicae 44, 259–264,
1978.

The hyperbolic version was proved undecidable in 2007

independently (and with a very different proof) by M.Margenstern.



Outline of the talk

• Introduction. Historical perspective.

• Wang tiles

• Aperiodicity. An aperiodic tile set of 14 Wang tiles.

• The immortality problem of piecewise affine transformations.

• Reductions:

(a) Immortality problem of Turing machines −→ immortality

problem of piecewise affine transformations of R2.

(b) Immortality problem of piecewise affine maps −→ the tiling

problem

• Undecidability of the tiling problem in the hyperbolic plane.



Wang tiles

A Wang tile is a unit square tile with colored edges. A tile set T is

a finite collection of such tiles. A valid tiling is an assignment

Z2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.



Wang tiles

A Wang tile is a unit square tile with colored edges. A tile set T is

a finite collection of such tiles. A valid tiling is an assignment

Z2 −→ T

of tiles on infinite square lattice so that the abutting edges of

adjacent tiles have the same color.

For example, consider Wang tiles

A B C D



With copies of the given four tiles we can properly tile a 5× 5
square. . .
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. . . and since the colors on the borders match this square can be
repeated to form a valid periodic tiling of the plane.



The tiling problem of Wang tiles is the decision problem to

determine if a given finite set of Wang tiles admits a valid tiling of

the plane.

Theorem (R.Berger 1966): The tiling problem of Wang tiles is

undecidable.



Note: Wang tiles are abstract tiles, but one can effective transform

them into equivalent concrete shapes (e.g. polygons with rational

coordinates).

For example, we can make each Wang tile into a unit square tile

whose left and upper edges have a bump and the right and lower

edge has a dent. The shape of the bump/dent depends on the color

of the edge. Each color has a unique shape associated with it (and

different shapes are used for horizontal and vertical colors).

A B C D

DCBA



Aperiodicity

A tiling is called periodic if it is invariant under some non/zero

translation of the plane. A simple reasoning shows that any Wang

tile set that admits a periodic tiling also admits a tiling with a

horizontal and a vertical period: the tiling is formed by repeating a

rectangular pattern.
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It was conjectured by Hao Wang in the 50’s that any tile set that

admits a valid tiling of the plane necessarily admits a valid periodic

tiling.

In his undecidability proof R.Berger refuted this conjecture: he

constructed a set of Wang tiles that properly tile the plane but

they do not admit any periodic tilings. Such tile sets are called

aperiodic.

Berger’s original aperiodic tile set contained over 20,000 tiles.

Smaller aperiodic sets were soon discovered by various people. The

current record is a 13 tile aperiodic set of Wang tiles, due to

K.Culik.



If Wang’s conjecture had been true and aperiodic tile sets would

not exist then the tiling problem would be decidable: One could try

all possible tilings of larger and larger rectangles until either

(a) a rectangle is found that can not be tiled (so no tiling
of the plane exists), or

(b) a tiling of a rectangle is found such that the colors at left and

right sides match and the colors of the top and bottom sides

match each other (so a periodic tiling exists).

Only aperiodic tile sets fail to reach either (a) or (b). . .
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If Wang’s conjecture had been true and aperiodic tile sets would

not exist then the tiling problem would be decidable: One could try

all possible tilings of larger and larger rectangles until either

(a) a rectangle is found that can not be tiled (so no tiling of the

plane exists), or

(b) a tiling of a rectangle is found such that the colors at left and

right sides match and the colors of the top and bottom sides

match each other (so a periodic tiling exists).

Only aperiodic tile sets fail to reach either (a) or (b). . .

We see that any undecidability proof of the tiling problem must

contain (explicitly or implicitly) a construction of an aperiodic tile

set.



14 tile aperiodic set

The colors in our Wang tiles are real numbers, for example
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The colors in our Wang tiles are real numbers, for example
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We say that tile
n

s

ew

multiplies by number q ∈ R if

qn + w = s + e.

(The ”input” n comes from the north, and the ”carry in” w from

the west is added to the product qn. The result is split between the

”output” s to the south and the ”carry out” e to the east.)



14 tile aperiodic set

The colors in our Wang tiles are real numbers, for example

1

0-1

2

-1

1

11

-1

2

0 1

0 -1 00

We say that tile

n

s

ew

multiplies by number q ∈ R if

qn + w = s + e.

The four sample tiles above all multiply by q = 2.



Suppose we have a correctly tiled horizontal segment where all tiles

multiply by the same q.

s

ew
1

2 3 k

n n n n

s s s

1 2 3 k

k

1

It easily follows that

q(n1 + n2 + . . . + nk) + w1 = (s1 + s2 + . . . + sk) + ek.

To see this, simply sum up the equations

qn1 + w1 = s1 + e1

qn2 + w2 = s2 + e2

...

qnk + wk = sk + ek,

taking into account that always ei = wi+1.



Suppose we have a correctly tiled horizontal segment where all tiles

multiply by the same q.

s

ew
1

2 3 k

n n n n

s s s

1 2 3 k

k

1

If, moreover, the segment begins and ends in the same color

(w1 = ek) then

q(n1 + n2 + . . . + nk) = (s1 + s2 + . . . + sk).



For example, using our three sample tiles that multiply by q = 2 we

can form the segment

1

2

1

11

-1

0

-1

in which the sum of the bottom labels is twice the sum of the top

labels.
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Our aperiodic tile set consists of the four tiles that multiply by 2,

together with another family of 10 tiles that all multiply by 2
3 .
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Let us call these two tile sets T2 and T2/3. Vertical edge colors of

the two parts are made disjoint, so any properly tiled horizontal

row comes entirely from one of the two sets.



Let us prove that no periodic tiling exists. Suppose the contrary: A

rectangle can be tiled whose top and bottom rows match and left

and right sides match.

n

1

2

3

k+1

k

n

n

n

n

Denote by ni the sum of the numbers on the i’th horizontal row

(counted from top to bottom). Let the tiles of the i’th row multiply

by qi ∈ {2, 2
3}.



Let us prove that no periodic tiling exists. Suppose the contrary: A

rectangle can be tiled whose top and bottom rows match and left

and right sides match.

n
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n

n

Denote by ni the sum of the numbers on the i’th horizontal row

(counted from top to bottom). Let the tiles of the i’th row multiply

by qi ∈ {2, 2
3}.

From our previous discussion we know that ni+1 = qini, for all i.
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Let us prove that no periodic tiling exists. Suppose the contrary: A

rectangle can be tiled whose top and bottom rows match and left

and right sides match.

n

1

2

3

k+1

k

n

n

n

n

So we have q1q2q3 . . . qkn1 = nk+1 = n1.

Clearly n1 > 0, so we have q1q2q3 . . . qk = 1. But this is not

possible since 2 and 3 are relatively prime: No product of numbers

3 and 2
3 can equal 1.



Next step: We still need to show that a valid tiling of the plane

exists using our tiles. For this purpose we introduce sturmian or

balanced representations of real numbers as bi-infinite sequences

of two closest integers.

The representation of any α ∈ R is the sequence B(α) whose k’th

element is

Bk(α) = bkαc − b(k − 1)αc.
For example,

B( 1
3 ) = . . . 0 0 1 0 0 1 0 0 1 0 0 1 . . .
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Next step: We still need to show that a valid tiling of the plane

exists using our tiles. For this purpose we introduce sturmian or

balanced representations of real numbers as bi-infinite sequences

of two closest integers.

The representation of any α ∈ R is the sequence B(α) whose k’th

element is

Bk(α) = bkαc − b(k − 1)αc.
For example,

B( 1
3 ) = . . . 0 0 1 0 0 1 0 0 1 0 0 1 . . .

B( 7
5 ) = . . . 1 1 2 1 2 1 1 2 1 2 1 1 . . .

B(
√

2) = . . . 1 1 2 1 2 1 2 1 1 2 1 1 . . .
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The first tile set T2 is designed so that it admits a tiling of every

infinite horizontal strip whose top and bottom labels read B(α)

and B(2α), for all α ∈ R satisfying

0 ≤ α ≤ 1, and

1 ≤ 2α ≤ 2.

For example, with α = 3
4 :
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The first tile set T2 is designed so that it admits a tiling of every

infinite horizontal strip whose top and bottom labels read B(α)

and B(2α), for all α ∈ R satisfying

0 ≤ α ≤ 1, and

1 ≤ 2α ≤ 2.



 ⇐⇒ 1

2
≤ α ≤ 1

For example, with α = 3
4 :
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The four tiles can be also interpreted as transitions of a finite state

transducer whose states are the vertical colors and input/output

symbols of transitions are the top and the bottom colors:

-1 0

1/1

0/1

1/21/2

A tiling of an infinite horizontal strip is a bi-infinite path whose

input symbols and output symbols read the top and bottom colors

of the strip. We must have enough transitions to allow the

transducer to convert B(α) into B(2α).
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This is guaranteed by including in the tile set for every 1
2 ≤ α ≤ 1

and every k ∈ Z the following tile

2b(k − 1)αc − b2(k − 1)αc 2bkαc − b2kαc

Bk(2α)

Bk(α)
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This is guaranteed by including in the tile set for every 1
2 ≤ α ≤ 1

and every k ∈ Z the following tile

2b(k − 1)αc − b2(k − 1)αc 2bkαc − b2kαc

Bk(2α)

Bk(α)

(1) For fixed α the tiles for consecutive k ∈ Z match so that a

horizontal row can be formed whose top and bottom labels read the

balanced representations of α and 2α, respectively.
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This is guaranteed by including in the tile set for every 1
2 ≤ α ≤ 1

and every k ∈ Z the following tile

2b(k − 1)αc − b2(k − 1)αc 2bkαc − b2kαc

Bk(2α)

Bk(α)

(2) A direct calculation shows that the tile multiplies by 2, that is,

2n + w = s + e.
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This is guaranteed by including in the tile set for every 1
2 ≤ α ≤ 1

and every k ∈ Z the following tile

2b(k − 1)αc − b2(k − 1)αc 2bkαc − b2kαc

Bk(2α)

Bk(α)

(3) There are only finitely many such tiles, even though there are

infinitely many k ∈ Z and α. The tiles are the four tiles of T2.



An analogous construction can be done for any rational multiplier

q. We can construct the following tiles for all k ∈ Z and all α in the

domain interval:
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If q is a rational number and the domain interval is a finite interval

then there are only a finite number of such tiles. The tiles multiply

by q, and they admit a tiling of a horizontal strip whose top and

bottom labels read B(α) and B(qα).



An analogous construction can be done for any rational multiplier

q. We can construct the following tiles for all k ∈ Z and all α in the

domain interval:

qb(k − 1)αc − bq(k − 1)αc qbkαc − bqkαc

Bk(qα)

Bk(α)

If q is a rational number and the domain interval is a finite interval

then there are only a finite number of such tiles. The tiles multiply

by q, and they admit a tiling of a horizontal strip whose top and

bottom labels read B(α) and B(qα).

Our second tile set T2/3 was constructed in this way for q = 2
3 and

1 ≤ α ≤ 2.
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-1 0
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Now we can see that the tiles admit valid tilings of the plane that

simulate iterations of the piecewise linear dynamical system

f : [
1
2
, 2] −→ [

1
2
, 2]

where

f(x) =





2x, if x ≤ 1, and
2
3x, if x > 1.

Balanced representation of f(x)

Balanced representation of x



Now we can easily see that the tiles admit valid tilings of the plane

that simulate iterations of the piecewise linear dynamical system

f : [
1
2
, 2] −→ [

1
2
, 2]

where

f(x) =





2x, if x ≤ 1, and
2
3x, if x > 1.

2

Balanced representation of x

Balanced representation of f  (x)



Now we can easily see that the tiles admit valid tilings of the plane

that simulate iterations of the piecewise linear dynamical system

f : [
1
2
, 2] −→ [

1
2
, 2]

where

f(x) =





2x, if x ≤ 1, and
2
3x, if x > 1.

3Balanced representation of f  (x)

Balanced representation of x



Now we can easily see that the tiles admit valid tilings of the plane

that simulate iterations of the piecewise linear dynamical system

f : [
1
2
, 2] −→ [

1
2
, 2]

where

f(x) =





2x, if x ≤ 1, and
2
3x, if x > 1.

Balanced representation of x

Balanced representation of f  (x)4



Similar construction can be effectively carried out for any piecewise

linear function on a union of finite intervals of R, as long as the

multiplications are with rational numbers q.

In order to prove undecidability results concerning tilings it is

desirable to simulate slightly more complex dynamical systems that

can carry out Turing computations.

We generalize the construction in two ways:

• from linear maps to affine maps, and

• from R to R2, (or Rd for any d).



Immortality of piecewise affine maps

Consider a system of finitely many pairs (Ui, fi) where

• Ui are disjoint unit squares of the plane with integer corners,

• fi are affine transformations with rational coefficients.

Square Ui is understood as the domain where fi may be applied.



The system determines a function

f : D −→ R2

whose domain is
D =

⋃

i

Ui

and
f(~x) = fi(~x) for all ~x ∈ Ui.



The orbit of ~x ∈ D is the iteration of f starting at point ~x. The

iteration can be continued as long as the point remains in the

domain D.
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The orbit of ~x ∈ D is the iteration of f starting at point ~x. The

iteration can be continued as long as the point remains in the

domain D.



But if the point goes outside of the domain, the system halts.

If the iteration always halts, regardless of the starting point ~x, the

system is mortal. Otherwise it is immortal: there is an immortal

point ~x ∈ D from which a non-halting orbit begins.



Immortality problem: Is a given system of affine maps
immortal?

Proposition: The immortality problem is undecidable.

To prove the undecidability one can use a standard technique for
transforming Turing machines into two-dimensional piecewise
affine transformations.



Turing machine configuration

a b c d e f g h i

q

is encoded as the pair (x, y) ∈ R2 where the digits of x and y (in
some suitably large base B) express the contents of the left and
right halves of the tape:





x = ef.ghi . . .

y = qd.cba . . .

The integer parts of x and y determine the next move of the
machine, that is, the next move depends on the integer unit square
containing point (x, y).



a b c d f g h i

q r

xe

A left move of the Turing machine requires that the digits of x and
y are shifted one position to the right and left, respectively. Adding
suitable (integer) constants takes care of changes in the state q and
the current tape symbol e.





x = ef.ghi . . .

y = qd.cba . . .
7→





x′ = dx.fghi . . .

y′ = rc.ba . . .

This is an affine transformation whose matrix is




1
B 0

0 B


.



a b c d f g h i

q r

xe

Analogously, a right move is simulated by an affine transformation

whose matrix is 
 B 0

0 1
B


 .

Additional changes in the integer parts complete the

transformation:



x = ef.ghi . . .

y = qd.cba . . .
7→





x′ = fg.hi . . .

y′ = rx.dcba . . .



A given Turing machine is converted in this way into a system of

unit squares Ui and corresponding affine transformations fi. Then

iterations of the Turing machine on arbitrary configurations

correspond to iterations of the affine maps.
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In particular, the system of affine maps has an immortal point if

and only if the Turing machine has an immortal configuration,
that is, a configuration that leads to a non-halting computation in

the Turing machine. But we have the following result:

Theorem (Hooper 1966): It is undecidable if a given Turing

machine has any immortal configurations.



A given Turing machine is converted in this way into a system of

unit squares Ui and corresponding affine transformations fi. Then

iterations of the Turing machine on arbitrary configurations

correspond to iterations of the affine maps.

In particular, the system of affine maps has an immortal point if

and only if the Turing machine has an immortal configuration,
that is, a configuration that leads to a non-halting computation in

the Turing machine. But we have the following result:

Theorem (Hooper 1966): It is undecidable if a given Turing

machine has any immortal configurations.

(Interesting historical note: Hooper and Berger were both students

of Hao Wang, at the same time. Their results are of same flavor

but the proofs are independent.)



Immortality problem: Is a given system of affine maps

immortal?

Proposition: The immortality problem is undecidable.

The proposition now follows from Hooper’s theorem.



Next we reduce the immortality problem to the tiling problem, by

effectively constructing Wang tiles that are forced to simulate

iterations of the given piecewise affine maps. Then a valid tiling of

the plane exists if and only if the dynamical system has an infinite

orbit, i.e. is not mortal.

The construction is very similar to the earlier construction of 14

aperiodic tiles.



The colors in our Wang tiles are elements of R2.

Let f : R2 −→ R2 be an affine function. We say that tile

n

w

s

e

computes function f if

f(~n) + ~w = ~s + ~e.



Suppose we have a correctly tiled horizontal segment of length n

where all tiles compute the same f .

Average =

e

s

n

w

Average =

It easily follows that

f(~n) +
1
n

~w = ~s +
1
n

~e,

where ~n and ~s are the averages of the top and the bottom labels.



Suppose we have a correctly tiled horizontal segment of length n

where all tiles compute the same f .

Average =

e

s

n

w

Average =

It easily follows that

f(~n) +
1
n

~w = ~s +
1
n

~e,

where ~n and ~s are the averages of the top and the bottom labels.

As the segment is made longer, the effect of the carry in and out

labels ~w and ~e vanish.



Consider a system of affine maps fi and unit squares Ui.

For each i we construct a set Ti of Wang tiles

• that compute function fi, and

• whose top edge labels ~n are in Ui.

An additional label i on the vertical edges makes sure that tiles of
different sets Ti and Tj cannot be mixed on any horizontal row of
tiles. Let

T =
⋃

i

Ti.



Claim: If T admits a valid tiling then the system of affine maps

has an immortal point.

Indeed: An immortal point is obtained as the average of the top

labels on a horizontal row of the tiling. The averages on subsequent

horizontal rows below are the iterates of that point under the

dynamical system.



Claim: If T admits a valid tiling then the system of affine maps

has an immortal point.

Indeed: An immortal point is obtained as the average of the top

labels on a horizontal row of the tiling. The averages on subsequent

horizontal rows below are the iterates of that point under the

dynamical system.

If the average over an infinite horizontal row does not exist then we

take an accumulation point of averages of finite segments

instead. . . this always exists.



We still have to detail how to choose the tiles so that also the

converse is true: any immortal orbit of the affine maps corresponds

to a valid tiling.

For any ~x ∈ R2 and k ∈ Z denote

Bk(~x) = bk~xc − b(k − 1)~xc

where the floor is taken on both coordinates separately:

b(x, y)c = (bxc, byc).



We still have to detail how to choose the tiles so that also the

converse is true: any immortal orbit of the affine maps corresponds

to a valid tiling.

For any ~x ∈ R2 and k ∈ Z denote

Bk(~x) = bk~xc − b(k − 1)~xc
where the floor is taken on both coordinates separately:

b(x, y)c = (bxc, byc).

The balanced (or sturmian) representation of vector ~x is the

two-way infinite sequence

B(~x) = . . . B−2(~x), B−1(~x), B0(~x), B1(~x), B2(~x), . . .

In other words, the sequence consists of the balanced

representations of both coordinates of the vector.



The tile set corresponding to a rational affine map

fi(~x) = M~x +~b

and its domain square Ui consists of all tiles

fi(b(k − 1)~xc)
−b(k − 1)fi(~x)c

+(k − 1)~b

fi(bk~xc)
−bkfi(~x)c

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.



fi(b(k − 1)~xc)
−b(k − 1)fi(~x)c

+(k − 1)~b

fi(bk~xc)
−bkfi(~x)c

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.

(1) For fixed ~x ∈ Ui the tiles for consecutive k ∈ Z match so that a

horizontal row can be formed whose top and bottom labels read the

balanced representations of ~x and fi(~x), respectively.



fi(b(k − 1)~xc)
−b(k − 1)fi(~x)c

+(k − 1)~b

fi(bk~xc)
−bkfi(~x)c

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.

(2) A direct calculation shows that the tile computes function fi,

that is,

fi(~n) + ~w = ~s + ~e.



fi(b(k − 1)~xc)
−b(k − 1)fi(~x)c

+(k − 1)~b

fi(bk~xc)
−bkfi(~x)c

+k~b

Bk(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.

(3) Because fi is rational, there are only finitely many such tiles

(even though there are infinitely many k ∈ Z and ~x ∈ Ui). The tiles

can be effectively constructed.



If there is an infinite orbit then a tiling exists where the labels of

the horizontal rows read the balanced representations of the points

of the orbit:

Balanced representation of f(x)

Balanced representation of x



If there is an infinite orbit then a tiling exists where the labels of

the horizontal rows read the balanced representations of the points

of the orbit:

2

Balanced representation of x

Balanced representation of f  (x)



If there is an infinite orbit then a tiling exists where the labels of

the horizontal rows read the balanced representations of the points

of the orbit:

3Balanced representation of f  (x)

Balanced representation of x



If there is an infinite orbit then a tiling exists where the labels of

the horizontal rows read the balanced representations of the points

of the orbit:

Balanced representation of x

Balanced representation of f  (x)4



Conclusion: the tile set we constructed admits a tiling of the plane

if and only if the system of affine maps is immortal. Undecidability

of the tiling problem follows from the undecidability of the

immortality problem.



The hyperbolic plane

The technique works well also in the hyperbolic plane. Hyperbolic

plane is a plane where Euclid’s fifth axiom does not hold: For any

point P and a line L that does not contain P there are more than

one lines through P that do not intersect L.



The hyperbolic plane

The technique works well also in the hyperbolic plane. Hyperbolic

plane is a plane where Euclid’s fifth axiom does not hold: For any

point P and a line L that does not contain P there are more than

one lines through P that do not intersect L.

To display hyperbolic geometry on the screen (=Euclidean plane)

we use the half-plane projection. The hyperbolic plane is

represented as the Euclidean half plane. The division line is the

horizon.

• Hyperbolic points are points in the open Euclidean half plane,

and

• hyperbolic lines are semi-circles whose centers are on the

horizon (and half-lines that are perpendicular to the horizon.)





L
P



L
P



L
P



The role of the Euclidean Wang square tile will be played by a

hyperbolic pentagon.



The pentagons can tile a ”horizontal row”.



”Beneath” each pentagon fits two identical pentagons. The

pentagons are all congruent (=isometric copies of each other), but

the projection makes objects close to the horizon seem smaller.



Infinitely many ”horizontal rows” fill the lower part of the half

plane.



Similarily the upper part can be filled. We see that the pentagons

tile the hyperbolic plane (in an uncountable number of different

ways, in fact.)



On the hyperbolic plane Wang tiles are pentagons with colored
edges. Such pentagons may be placed adjacent if the edge colors
match. A given set of pentagons tiles the hyperbolic plane if a
tiling exists where the color constraint is everywhere satisfied.



The two sample tiles admit a tiling.



The hyperbolic tiling problem asks whether a given finite collection

of colored pentagons admits a valid tiling.

Theorem. The tiling problem of the hyperbolic plane is

undecidable.

Note that the hyperbolic Wang tiles can be transformed into

equivalent shapes exactly as in the Euclidean case: by introducing

different bumps and dents for different colors. So the undecidability

holds for the tiling problem using hyperbolic polygons.



We say that pentagon

r

n

ew

l

computes the affine transformation f : R2 −→ R2 if

f(~n) + ~w =
~l + ~r

2
+ ~e.

(Difference to Euclidean Wang tiles: The ”output” is now divided

between ~l and ~r.)



s

w e

Average = n

Average =

In a horizontal segment of length n where all tiles compute the

same f holds

f(~n) +
1
n

~w = ~s +
1
n

~e,

where ~n and ~s are the averages of the top and the bottom labels.

As the segment is made longer, the effect of the carry in and out

labels ~w and ~e vanish.



For a given system of affine maps fi and unit squares Ui we

construct for each i a set Ti of pentagons

• that compute function fi, and

• whose top edge labels ~n are in Ui.

It follows, exactly as in the Euclidean case, that if a valid tiling of

the hyperbolic plane with such pentagons exists then from the

labels of horizontal rows one obtains an infinite orbit in the system

of affine maps.



We still have to detail how to choose the tiles so that the converse
is also true: if an immortal point exists then its orbit provides a
valid tiling.

The tile set corresponding to a rational affine map

fi(~x) = M~x +~b

and its domain square Ui consists of all tiles

fi(b(k − 1)~xc)
− 1

2b2(k − 1)fi(~x)c
+(k − 1)~b

fi(bk~xc)
− 1

2b2kfi(~x)c
+k~b

B2k−1(fi(~x)) B2k(fi(~x))

Bk(~x)

where k ∈ Z and ~x ∈ Ui.



fi(b(k − 1)~xc)
− 1

2b2(k − 1)fi(~x)c
+(k − 1)~b

fi(bk~xc)
− 1

2b2kfi(~x)c
+k~b

B2k−1(fi(~x)) B2k(fi(~x))

Bk(~x)

(1) For fixed ~x ∈ Ui the tiles for consecutive k ∈ Z match so that a

horizontal row can be formed whose top and bottom labels read the

balanced representations of ~x and fi(~x), respectively.



fi(b(k − 1)~xc)
− 1

2b2(k − 1)fi(~x)c
+(k − 1)~b

fi(bk~xc)
− 1

2b2kfi(~x)c
+k~b

B2k−1(fi(~x)) B2k(fi(~x))

Bk(~x)

(2) A direct calculation shows that the tile computes function fi:

fi(~n) + ~w =
~l + ~r

2
+ ~e.



fi(b(k − 1)~xc)
− 1

2b2(k − 1)fi(~x)c
+(k − 1)~b

fi(bk~xc)
− 1

2b2kfi(~x)c
+k~b

B2k−1(fi(~x)) B2k(fi(~x))

Bk(~x)

(3) There are only finitely many such tiles (when fi is rational),

and they can be effectively constructed.



The tiles constructed admit a valid tiling iff the system of affine

maps has an immortal point:

Balanced representation of f(x)

Balanced representation of xBalanced representation of x



The tiles constructed admit a valid tiling iff the system of affine

maps has an immortal point:

Balanced representation of xBalanced representation of x

Balanced representation of f  (x)2



The tiles constructed admit a valid tiling iff the system of affine

maps has an immortal point:

Balanced representation of xBalanced representation of x

Balanced representation of f  (x)3



The tiles constructed admit a valid tiling iff the system of affine

maps has an immortal point:

Balanced representation of xBalanced representation of x

Balanced representation of f  (x)4



Conclusion
A new proof for the undecidability of the tiling problem was

presented. The proof was based on a reduction where one

constructed tiles such that valid tilings are forced to simulate

iterations of a system of affine transformations, which in turn

simulate Turing machine computations.

The construction works well also in other set-ups. In particular, we

showed that the tiling problem in the hyperbolic plane is

undecidable.

One can also obtain aperiodic tile sets on the hyperbolic plane.

(Aperiodicity: no tiling is left invariant by any non-trivial isometry

of the plane.) A set of 15 hyperbolic tiles comes up easily from the

construction.



Future work
What other lattices (e.g. Cayley graphs of which finitely generated

groups) have undecidable tiling problem ?

Can the Turing machine simulations presented in this work be done

in one-dimensional cellular automata ? In other words, it would be

nice to have a CA simulate a Turing machine uniformly everywhere

in space, so that any segment of a CA configuration encodes a

segment of the Turing machine tape, and longer CA segments

encode longer portions of the Turing machine tape.

What other tiling properties can be deduced undecidable using this

method ?

What is the smallest aperiodic set of Wang tiles ?


