An Automata Theoretic Approach to Rational Tree Relations

Frank Radmacher

RWTHAACHEN

SOFSEM 2008

Frank Radmacher – An Automata Theoretic Approach to Rational Tree Relations

There exist several equivalent descriptions of rational word relations, e.g.

- rational expressions:
 - for instance $R = \{(v, uv) | u, v \in \Sigma^*\}$ is definable by $\left(\binom{\varepsilon}{a} + \binom{\varepsilon}{b}\right)^* \cdot \left(\binom{a}{a} + \binom{b}{b}\right)^*$
- asynchronous automata (also called multitape automata):
 - (these have transitions of the form $p \xrightarrow{a_1/.../a_n} q$ in $Q \times (\Sigma_1 \cup \{\varepsilon\}) \times ... \times (\Sigma_n \cup \{\varepsilon\}) \times Q$)

- Goal: Generalization to trees with the alternative descriptions by rational expressions and asynchronous automata.
- Starting point: Definition via rational expressions over trees (J.-C. Raoult (1997)).
- An automata theoretic approach is still missing.
 We define asynchronous tree automata recognizing exactly Raoult's relations.

Rational Tree Expressions

Jean-Claude Raoult. Rational tree relations.

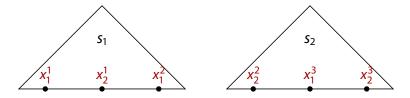
Bull. Belg. Math. Soc., 4(1): 149–176, 1997.

Definition

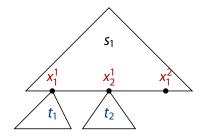
The classes Rat_n of rational tree relations are defined inductively:

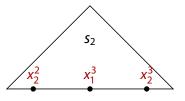
- Each finite *n*-ary tree relation is in Rat_n.
- $\blacksquare R \in \operatorname{Rat}_n \land S \in \operatorname{Rat}_n \implies R \cup S \in \operatorname{Rat}_n.$
- $\blacksquare R \in \operatorname{Rat}_n \land |X| = m \land S \in \operatorname{Rat}_m \implies R \cdot_X S \in \operatorname{Rat}_n.$
- $\blacksquare R \in \operatorname{Rat}_n \land |X| = n \implies R^{*x} \in \operatorname{Rat}_n.$

 $\{(s_1, s_2)\}$ ·_X $\{(t_1, t_2), (t'_1, t'_2)\}$ with respect to a multivariable $X = x_1x_2$:

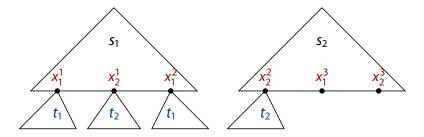


 $\{(s_1, s_2)\}$ ·_X $\{(t_1, t_2), (t'_1, t'_2)\}$ with respect to a multivariable $X = x_1x_2$:

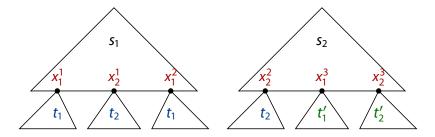




 $\{(s_1, s_2)\}$ ·_X $\{(t_1, t_2), (t'_1, t'_2)\}$ with respect to a multivariable $X = x_1x_2$:



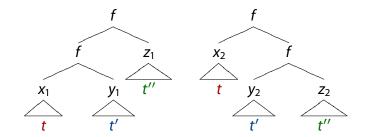
 $\{(s_1, s_2)\}$ ·_X $\{(t_1, t_2), (t'_1, t'_2)\}$ with respect to a multivariable $X = x_1x_2$:



 $(2^3 = 8 \text{ possibilities})$

Example 1

Rational expression $(ffx_1y_1z_1, fx_2fy_2z_2) \cdot_{x_1x_2} (t, t) \cdot_{y_1y_2} (t', t') \cdot_{z_1z_2} (t'', t'')$

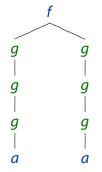


Right rotation is definable by a rational expression.

Example 2

Rational expression

 $(fx_1x_2)\cdot_{x_1x_2}(gx_1,gx_2)^{*_{x_1x_2}}\cdot_{x_1x_2}(a,a)$

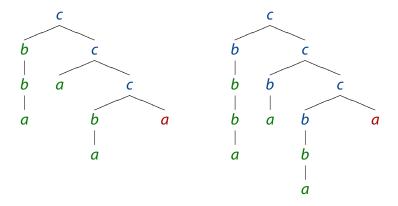


Consequence: Unary rational tree relations do not coincide with regular tree languages.

Example 3

Rational expression

 $(cx_1y_1, cbx_2y_2)^{*_{y_1y_2}} \cdot y_{y_1y_2}(a, a) \cdot x_{x_1x_2}(bx_1, bx_2)^{*_{x_1x_2}} \cdot x_{x_1x_2}(a, a)$



An unbounded number of multivariable instances can be generated.

Frank Radmacher – An Automata Theoretic Approach to Rational Tree Relations

Asynchronous Tree Automata

What do we need for an automata theoretic approach?

Asynchronous Tree Automata

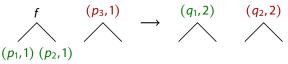
What do we need for an automata theoretic approach?

- Mechanism analogous to multivariables.
 - Macro states: e.g. $\mathfrak{p} = (p_1, p_2, p_3), \mathfrak{q} = (q_1, q_2)$
 - Finite set of macro states: e.g. $\mathfrak{Q} = \{\mathfrak{p}, \mathfrak{q}\}$

Asynchronous Tree Automata

What do we need for an automata theoretic approach?

- Mechanism analogous to multivariables.
 - Macro states: e.g. $p = (p_1, p_2, p_3), q = (q_1, q_2)$
 - Finite set of macro states: e.g. $\mathfrak{Q} = \{\mathfrak{p}, \mathfrak{q}\}$
- Instances of macro states have to be distinguishable.
 - Combining states with formal indices in the transitions: $((p_1, i), (p_2, i), f, (q_1, j)), ((p_3, i), \varepsilon, (q_2, j))$
 - Instantiation in the bottom-up run with natural numbers:



Only complete instances of macro states are left and reached.

Decidability Results

The following problems are decidable:

- membership problem
- emptiness problem (via reachability of final macro states)

Decidability Results

The following problems are decidable:

- membership problem
- emptiness problem (via reachability of final macro states)
- Undecidability Results are inherited from rational word relations.

$$\blacksquare R \cap S = \emptyset$$

- $\blacksquare R \subseteq S$
- $\blacksquare R = S$

It is undecidable whether a rational tree language is regular.

- Restricted to unary sets, rational tree relations do not coincide with the class of regular tree languages.
- Non-closure under composition (for binary relations).
- When a binary relation $R \subseteq A \times B$ is considered as transduction $\tau_R : A \to \mathcal{P}(B)$, rational tree relations do not preserve regular tree languages.

(e. g. the image over $T_{\Sigma} \times \{f(g^n a, g^n a) \mid n \in \mathbb{N}\}$ is not regular.)

Restrictions of Rational Tree Relations

Restrictions of rational tree relations to overcome the drawbacks:

- Transduction Grammars (J.-C. Raoult)
 - + Still good expressiveness
 - Not a proper generalization of *n*-ary rational relations over words
 - Restriction misses a natural automata theoretic description in our framework

Restrictions of Rational Tree Relations

Restrictions of rational tree relations to overcome the drawbacks:

- Transduction Grammars (J.-C. Raoult)
 - + Still good expressiveness
 - Not a proper generalization of *n*-ary rational relations over words
 - Restriction misses a natural automata theoretic description in our framework
- Separate-Rational Tree Relations (new proposal)
 - + Restriction is also natural for asynchronous tree automata
 - + Generalize *n*-ary rational word relations
 - Lack definability of some important relations and classes,
 e.g. left/right rotations, linear tree transducers

Both generalize automatic tree relations.

Separate-Rational Tree Relations

Definition

The classes SepRat_n of separate-rational tree relations are defined inductively:

Each finite n-ary tree relation is in SepRat_n

■
$$R \in \text{SepRat}_n \land |X| = m \land S \in \text{SepRat}_m$$

 $\implies R \cup S \in \text{SepRat}_n, R \cdot_X S \in \text{SepRat}_n, R^{*_X} \in \text{SepRat}_n$

Separate-Rational Tree Relations

Definition

The classes SepRat_n of separate-rational tree relations are defined inductively:

- Each finite *n*-ary tree relation is in SepRat_n
 - which only consists of trees with a height of 1 or 2 nodes
 - and has at most one variable of each multivariable in each component.
- $\blacksquare R \in \text{SepRat}_n \land |X| = m \land S \in \text{SepRat}_m$
 - \implies $R \cup S \in \text{SepRat}_n$, $R \cdot_X S \in \text{SepRat}_n$, $R^{*_X} \in \text{SepRat}_n$
 - where each component of a a tuple in *R* contains at most one variable of *X*.

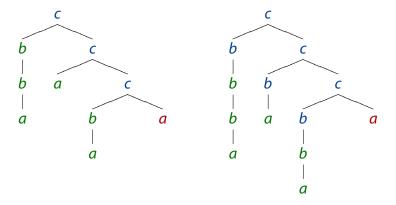
The restriction is also natural for asynchronous tree automata:

- Partition of the state set: Every state q_i of a macro state (q_1, \ldots, q_m) can occur in a run only in one projection.
- Consequence: Synchronization within one projection of the relation is prevented.

Example 3 revisited

Rational expression

 $(cx_1y_1, cx_2y_2)^{*_{y_1y_2}} \cdot {}_{x_1x_2} (x_1, bx_2) \cdot {}_{y_1y_2} (a, a) \cdot {}_{x_1x_2} (bx_1, bx_2)^{*_{x_1x_2}} \cdot {}_{x_1x_2} (a, a)$



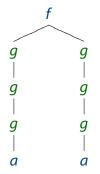
Relation is also separate-rational.

Frank Radmacher – An Automata Theoretic Approach to Rational Tree Relations

Example 2 revisited

Rational expression

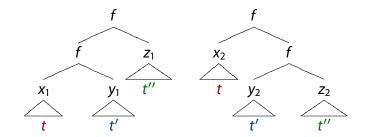
 $(fx_1x_2)\cdot_{x_1x_2}(gx_1,gx_2)^{*x_1x_2}\cdot_{x_1x_2}(a,a)$



Definable by an rational expression, but not by a separate-rational.

Example 1 revisited

Rational expression $(ffx_1y_1z_1, fx_2fy_2z_2) \cdot_{x_1x_2} (t, t) \cdot_{y_1y_2} (t', t') \cdot_{z_1z_2} (t'', t'')$



Right rotation is not separate-rational.

Conclusion

Summary:

- Rational tree relations are a non-trivial generalization of rational relations over words.
- Asynchronous tree automata enable further investigation of the theory.
- Restrictions are required to preserve the good properties of rational word relations.

Conclusion

Summary:

- Rational tree relations are a non-trivial generalization of rational relations over words.
- Asynchronous tree automata enable further investigation of the theory.
- Restrictions are required to preserve the good properties of rational word relations.

Outlook:

The automata theoretic approach enables the definition of

- rational relations over unranked trees
- deterministic rational tree relations

Conclusion

Summary:

- Rational tree relations are a non-trivial generalization of rational relations over words.
- Asynchronous tree automata enable further investigation of the theory.
- Restrictions are required to preserve the good properties of rational word relations.

Outlook:

The automata theoretic approach enables the definition of

- rational relations over unranked trees
- deterministic rational tree relations
 - a top-down approach is straightforward
 - the bottom-up approach seems to be challenging