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Stereovision – mathematical formulation.
Computation of the scene geometry – determination of 
the fundamental matrix by the linear optimization.
Problems point normalization & outliers

Outline
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Problems – point normalization & outliers.
Salient points from the structural tensor.
Matching in the extended log-polar space.
Experimental results (other applications…).
Conclusions.
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The corresponding points a and b are related by

0=Ta Fb
Once the matrix F is known, the epipolar lines, la for the left and lb for the right 
camera, can be determined as follows

la=Fb, lb=FTa. ?=F



Fundamental Matrix – Formulation
0=Ta Fb
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r is called a residual, vectors q and f are given as follows
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[ ]Tq 1,,,,,,,, 212222111211 aabbababbaba=

[ ]Tf 333231232221131211 ,,,,,,,, FFFFFFFFF=

Then, a K≥8 number of the corresponding points is gathered into a compound matrix 
QK×9. From Q the so called moment matrix M=QTQ is created which is of size 9x9. The 
matrix F is found as an eigenvector w of M which corresponds to the lowest eigenvalue
of M. This way found F minimizes the sum of squares of algebraic residuals 
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Fundamental Matrix – Computation
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where J=J1=diag[1,1,…,1] is the normalization matrix which corresponds to the 
optimization constraint in the form: ||f||=∑if2i=1.
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Solution to the optimization problem is obtained as an eigenvector fs=w that 
corresponds to the lowest eigenvalue λk of the moment matrix M.

Instead of J=J1 Torr and Fitzgibbon proposed to apply a constraint which is 
invariant to the Euclidean transformations in the image planes. They showed that 
the Frobenius norm of the form f21+f22+f24+f25 fulfils such invariance requirement. 
This corresponds to J=J2=diag[1,1,0,1,1,0,0,0,0]. Finding fs in this case is more 
complicated since it is equivalent to solving the generalized eigenvector problem: 

0T T− =f Jf f Mf



Fundamental Matrix – Problems
There are at least two additional problems:
1. Wide dynamical range of the coordinates.
2. Outliers.

The normalization is done by an affine transformation T, consisting of translation and 
scaling, so that the centroid of the reference points is at the origin of the coordinate 
space and the root-mean-square distance of the points from the origin is √2. 

Normalization
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ma=[ma1, ma2, 1] is a mean point,
sa=√2/dav for dav is an average point distance from the origin point [0, 0, 1].
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Normalization:

DeNormalization:



Fundamental Matrix – Problems
RANSAC + Log-Polar matching

Randomly choose a number of samples from the set of all measurements, try to fit a 
model to them, and check how many other points are in consensus with this model 
estimate. The process is repeated and the best fit, i.e. an estimate supported by the 
maximal number of measurements is left as a solution. All other points are treated as 
outliers.

7
Fitting a line to points by the RANSAC algorithm. Another 
randomly selected pair of points xk and xl serves other 
estimate y=a4x+b4. New region of inliers denoted in grey

Fitting a line to points – a step of the RANSAC algorithm. Randomly 
selected pair of points xi and xj serves an initial estimate y=a3x+b3. 
Distances of all other points to this estimate are checked and only those 
within a predefined threshold (grey area) are considered as inliers



Points-of-interest from Structural Tensor

Wgi
si

r

x0

sj

gj

A local neighbourhood Ω is represented with a single 
orientation vector w, which is accurate if most of the 
gradients gi in Ω coincide with w . This is equivalent to 
minimization of a cumulative sum of the residual 
vectors si in Ω which is also equivalent to finding 
eigenvectors of the structural tensor

T
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The error function:
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Points-of-interest from Structural Tensor

[ ]11 22 122 TT T T= −w

( )0,T G dσ
Ω

= ∫T g g x x xwhere STRUCTURAL TENSOR

Corner points (xi,yi) for matching fulfil the following condition
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A priority queue for selection of image points with the strongest responses



Image Matching in the Log-Polar Domain
The log-polar transformation takes points (x,y) from the Euclidean space into the (r,ϕ)
points in the polar space

( ) ( )( )2 2
0 0logBr x x y y= − + − 0

0
0

arctan ,
y y

for x x
x x

ϕ
−

= ≠
−

Matching a pattern in the extended log-polar space: For each position search is done in 
two dimensions to account for scale and rotation which results in a 4D search
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Each position in the extended space is matched pixel-by-pixel with ρ
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Experimental Setup
The ability of the LP matching to detect local rotation and scale can be used to sieve 
out the outliers. Our idea here is to reject all the matching pairs for which their local 
rotation or scale deviates significantly from 0.

The code was written in C++ on the Microsoft® .NET 2005 IDE. The tests were performed on the 
laptop computer with the Intel® Core™ Duo processor (dual-core) 2MB L2 cache (T2600 with 
2.16GHz speed) as well as the 2GB of the operational memory (RAM).
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Experimental Results
Matching of the exemplary video sequence. First frame (a) with salient points from the structural 
tensor detector. The next (5th) frame in a sequence with the matched points (b).
Outliers are the pairs of points no. 2 and 5
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Results of the log-polar matching process of the image above. Outliers in grey:



Experimental Results
Matching of the “Car” stereo pair. Left image (a) with salient points obtained by the 
structural tensor detector. The right image with the matched points (b). Two outliers
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Results of the LP matching process of the above images. Outliers in grey:



Experimental Results
Matching of the “Parkmeter” images. Left image (a) with salient points obtained by the 
structural tensor detector. The right image with the matched points (b). No outliers
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Matching “Tsukuba” pair divided into 4×4 tiles. 27×27 LP window used for matching. Left 
(a) with detected corners. The right with the matched points (b). No outliers



Efficient point matching method: stereovision (in this
presentation), but also object detection (Internet), 
object tracking, etc..
Computation of the salient points (corners) from the
structural tensor

Conclusions
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structural tensor.
Matching around salient points but in the log-polar 
space.
Advantage of this approach is possible detection of 
outliers based on their excessive local rotation 
and/or scale.



Thank you!
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Thank you!


