David Janin

LaBRI, Bordeaux University

21st January 2008

▲□▶▲□▶▲□▶▲□▶ □ のへで

Outlines

Synchronous vs asynchronous behaviors

Sequential Program synthesis

Distributed Program synthesis

More on the decidable case (hierarchical game)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

Outlines

Synchronous vs asynchronous behaviors

Sequential Program synthesis

Distributed Program synthesis

More on the decidable case (hierarchical game)

< ロ > < 団 > < 目 > < 目 > < 目 > < 回 < の < @

Outlines

Synchronous vs asynchronous behaviors

Sequential Program synthesis

Distributed Program synthesis

More on the decidable case (hierarchical game)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ♪ ○○○

Outlines

Synchronous vs asynchronous behaviors

Sequential Program synthesis

Distributed Program synthesis

More on the decidable case (hierarchical game)

Synchronous vs asynchronous behaviors

Distributed process

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Synchronous vs asynchronous behaviors

Synchronous behaviors

Processes hand shake at every step !

Synchronous vs asynchronous behaviors

Asynchronous behaviors

Processes receive mails in mail boxes !

Synchronous vs asynchronous behaviors

A meta result

Observation

When mailboxes are of bounded size, asynchronous behaviors are (essentially) synchronous !

Synchronous vs asynchronous behaviors

A question

Asynchronism in program synthesis

In the setting of distribuetd program synthesis, can we expect a similar reduction of asynchronous problems into synchronous one ? The answer is yes as I'll show you !

Synchronous vs asynchronous behaviors

A question

Asynchronism in program synthesis

In the setting of distribuetd program synthesis, can we expect a similar reduction of asynchronous problems into synchronous one ? The answer is yes as I'll show you !

Sequential Program synthesis

A wandering process

Goal : the process (player) needs to find his way.

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 < の < ()

Sequential Program synthesis

The wandering (simple) rules

Sequential Program synthesis

but with uncontrollable environment moves

The Wanderer against the Tour operator

Sequential Program synthesis

The wandering (real) game

● うく(~)

Distributed Program synthesis

n against 1 distributed game

- Each process only sees his own local states.
- Environment may or may not transmit (depending on his allowed moves).

Distributed Program synthesis

Synchronous scenarios

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Distributed Program synthesis

Asynchronous scenarios

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 > の < @

L Distributed Program synthesis

Encoding async. into sync. (1)

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 > の < ()

Distributed Program synthesis

Encoding async. into sync. (2)

< ロ > < 団 > < 目 > < 目 > < 目 > < 目 > の < @

Distributed Program synthesis

Main results

Theorem

For any finite distibuted game \mathcal{G} there is a synchronous finite distributed game \mathcal{H} such processes do have a finite state winning distributed strategy in \mathcal{G} if and only if they have a finite state distributed strategy in \mathcal{H} .

More on the decidable case (hierarchical game)

And what about decidability issues ?

The reduction from asynchronous to synchronous games may break structural decidability properties !

More on the decidable case (hierarchical game)

Hierarchical game

• Each process sees the local states of all processes on his right.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへで

More on the decidable case (hierarchical game)

Known and new results

Theorem (Peterson and Reif, 80s)

Finite distributed game are undecidable (even Σ_1^1 -complete) but finite distributed hierarchical games are decidable !

Theorem

Reduction of distributed game to synchronous distributed game can be *adapted* to the hierarchical case so that decidability is preserved.

Welcome in Bordeaux from the 21st to the 23rd february

