Geometric Rates of Approximation
by Neural Networks

Véra Kurkova
Institute of Computer Science
Academy of Sciences of the Czech Republic
Prague

Marcello Sanguineti
Universita di Genova, Genova



estimates of model complexity of neural networks

derived using tools from approximation theory



Learning = optimization problem

(M, D)
hypothesis set functional
input/output functions defined by data

minimize ¢ over M

span, G = linear combinations of n expected error functional &,
functions corresponding to the empirical error functional &,
type of computational units data: sample z or measure p

N = number of network units = measure of network complexity



Problem

for given data (defined either by a probability measure or by a

sample) find a suitable type of computational units (defined by
a parameterized set of functions )

the better choice of units, the smaller number n of computational
units



Functional defined by a sample of data
z={(u;,v))|i=1,...,m} CRExR sample of data

Empirical error functional

E:f) = %g:l(f(ui) — ;)

(um’Vm)

Minimization of empirical error functional =
the least square method Gauss 1809, Legendre 1806



Functional defined by a probability measure

p = non degenerate (no nonempty open set has measure zero)
probability measure on Z=X xY p(Z)=1
X C R? compact Y R bounded

Expected error functional

En(f) = Jxxy (f(u) —v)%dp



Traditional applications of the least square method

best fitting functions were searched for in
LINEAR hypothesis spaces

= limitations on applications to high-dimensional data!

CURSE OF DIMENSIONALITY

the dimension n of a linear space needed for approximation of
smooth functions of d variables within accuracy ¢ is

o))

= model complexity n of LINEAR models grows
EXPONENTIALLY with the data dimension d



Hypothesis sets in neurocomputing

the best fitting functions are searched for in
NONLINEAR and NONCONVEX hypothesis spaces

span,, G = {>2"" jw;g; |w; €R,g; € G}

= set of functions computable by a network with one linear
output and n hidden units computing functions from &

a nested family ... € span,, G C span,, .1 G C ...

variable-basis approximation scheme
approximation from a dictionary



Computational units

perceptrons:
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radial-basis function (RBF) units:

G= By(y) = {¢0|lr —v
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PLANE WAVES

SPHERE WAVES




Optimal solution
Global minimum of expected error &,

Regression function

folz) = [y ydp(y|z)

p(y|lr) =conditional (w.r.t. ) probability measure on Y
px = marginal probability measure on X (VS C X  px(S) =
p(ﬁ)_(l(S)), wx : X XY — X projection)

in ¢ L2 Ep(f) = Ep(fp)

the regression function f, is global minimizer of &, over E%X

10



Optimal solution
Global minimum of empirical error &,

V sample of data z of size m
d interpolating function f“ computable by a network with
m units  fY € span,,,G

minfe span,,, & Sz(f) - 5Z(f0) =0

holds for sigmoidal perceptrons and RBF and kernel units with
suitable kernels
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Approximate minimization

optimal solutions f“ and the regression function f,

may not be computable by networks with a reasonably small
number of hidden units

BUT they can be approximated by suboptimal solutions
= minima over span, G with n << m number of units

approximation of the problems (span,,G,E-) and (span,,G, Ep)
by a sequence of problems
{(span,,G,&;)|n=1,...,m} and  {(span,G,&))|n=1,...,m}
speed of convergence as a measure of complexity

feslg)lannG 2(f) — an fESIglannG o(f) — Eo(fp)
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Tools from approximation theory

minimization of expected error &, is equivalent to
minimization of the L‘%X—distance from the regression function f,

minimization of empirical error £, is equivalent to
minimization of the [?-distance from f.

fZ(uz) = Uy
= we can use tools from approximation theory to

estimate speed of convergence of infima (minima) of
error functionals over span, G with n increasing
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Upper bound on rates of variable-basis approximation

Maurey (1981), Jones (1992), Barron (1993)
G a bounded subset of a Hilbert space (X, ||.||), sq =sup,cq l9]]
Vf€EeconvG Vn

> N2
1 — conv, G| < \/SG 1]
n

convy G = {31 wig; |w; € 10,1], 30 = 1,9, € G}

Corollary: Vfe X Vn

sallflla
I — span, || < Sclf e

NG

|-l = norm tailored to G
I/l =inf{b> 0]} € cleonv(G U ~G)}
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Comparison with linear approximation

number of hidden units = model complexity of the network
needed for approximation within € grows as

1\ 2
o (})
: 1\ d . : :
in contrast to O (g) in linear approximation

d = number of variables of functions in ¢
= number of network inputs
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Norm tailored to a set of functions G

(X, ]|.]|) normed linear space, G bounded subset of X
G-variation = Minkowski functional of the
closed convex symmetric hull of G

1fllc = inf{b> 0|4 € cleonv(C U —C)}

(1) G orthogonal ]

[-norm
[Fllc = [Ill,c = Xgec |19l k
[i-norm wrt G

(2) G characteristic
functions of half-spaces
(perceptrons)

variation wrt half-spaces

(generalization of total variation) ﬂ
T(f>:f|f/| d=1 w
~ sum of “heights of steps”
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function




Tightness of Maurey-Jones-Barron’s theorem

Maurey-Jones-Barron's theorem is a worst-case result
holds for all functions in a ball in variational norm

Tightness results:
G orthonormal (constructive proof)

G sigmoidal perceptrons (proof by contradiction based on com-
parison of covering numbers)
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Improvements of Maurey-Jones-Barron’s theorem

better rates of approximation for
suitable subsets of balls in variational norms

LLavretsky, 2002
defined a subset Fjs(G) of convG (for § € (0,1])

Ve F5(G>
If = convp G|l < (1= 8)" s = I £117)

missing characterization of Fj3(G), no examples
7 is F5(G) non-empty 7

non transparent definition
F5(G) = {f € clconv G| (Vh € conv G, f # h)(3g € G)

(F—9)-(F=h) < =slIf —gllllf —nl)}
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Geometric rate for all functions in convG

Kdrkova, Sanguineti
(X, ]|.]) @ Hilbert space, G its bounded subset
Vfe X 35y € (0,1]

If — convn G| < (1= 8¢)" " Hsa* = |1 £1IP)

constructive proof, 5f and incremental approximants are not de-
fined uniquely
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Sets of functions with the same geometric rate
we can define unique 4(f)
5() = max {5 > 0] (¥n)||f — conva G| < (1= 63" s6? = /1) }
As(G) ={f € conv G| 6(f) = 6}
convG = Use (g 1145(G)

? geometry of sets Ag(G) ?
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Geometry of sets A;(G)

(X, ]|.]]) infinite-dimensional separable Hilbert space
G orthornormal basis

Vk > 3 3hy, € conv G with ||h]| = ﬁ

1
S(h)2 <1 —5 FT¢e k-1

As(G) are not convex and do not contain any ball (even any
sphere) in ||.||

in finite dimensional spaces sets As(G) contain balls in ||.||
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Conclusion

every function f in a Hilbert space can be approximated by span,, &

with a rate bounded from above by %

(G-variation can be estimated using various methods (integral
representations, smoothing operators, maxima of partial deriva-
tives...)

MOREOVER

every function f in conv(G can be approximated by span, G with
a rate bounded from above by (1 — 6(f)* Hs? — ||f||?) where
6(f) € (0,1] is specific for each f

BUT geometry of sets with the same §(f) is complicated, cha-
racterization is difficult
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