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estimates of model complexity of neural networks

derived using tools from approximation theory
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Learning = optimization problem

(M, Φ)

hypothesis set
input/output functions

functional
de�ned by data

minimize Φ over M

spannG = linear combinations of n

functions corresponding to the
type of computational units

expected error functional Eρ

empirical error functional Ez

data: sample z or measure ρ

n = number of network units = measure of network complexity
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Problem

for given data (de�ned either by a probability measure or by a
sample) �nd a suitable type of computational units (de�ned by
a parameterized set of functions G)

the better choice of units, the smaller number n of computational
units
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Functional de�ned by a sample of data

z = {(ui, vi) | i = 1, . . . , m} ⊆ Rd × R sample of data

Empirical error functional

Ez(f) = 1
m

m∑
i=1

(f(ui)− vi)2

u v

Minimization of empirical error functional =
the least square method Gauss 1809, Legendre 1806
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Functional de�ned by a probability measure

ρ = non degenerate (no nonempty open set has measure zero)
probability measure on Z = X × Y ρ(Z) = 1

X ⊂ Rd compact Y ⊂ R bounded

Expected error functional

Eρ(f) =
∫
X×Y (f(u)− v)2dρ
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Traditional applications of the least square method

best �tting functions were searched for in
LINEAR hypothesis spaces

⇒ limitations on applications to high-dimensional data!

CURSE OF DIMENSIONALITY

the dimension n of a linear space needed for approximation of
smooth functions of d variables within accuracy ε is

O
((

1
ε

)d
)

⇒ model complexity n of LINEAR models grows
EXPONENTIALLY with the data dimension d
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Hypothesis sets in neurocomputing

the best �tting functions are searched for in
NONLINEAR and NONCONVEX hypothesis spaces

spann G = {∑n
i=1 ωigi |ωi ∈ R, gi ∈ G}

= set of functions computable by a network with one linear
output and n hidden units computing functions from G

a nested family .... ⊆ spann G ⊆ spann+1 G ⊆ ....

variable-basis approximation scheme
approximation from a dictionary
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Computational units

perceptrons:
G = Pd(σ) = {σ(v.x + b) | v ∈ Rd, b ∈ R} PLANE WAVES

radial-basis function (RBF) units:
G= Bd(ψ) = {ψ(b‖x− v‖) | v ∈ Rd, b ∈ R} SPHERE WAVES
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Optimal solution

Global minimum of expected error Eρ

Regression function
fρ(x) =

∫
Y y dρ(y|x)

ρ(y|x) =conditional (w.r.t. x) probability measure on Y

ρX = marginal probability measure on X (∀S ⊆ X ρX(S) =
ρ(π−1

X (S)), πX : X × Y → X projection)

minf∈L2
ρX
Eρ(f) = Eρ(fρ)

the regression function fρ is global minimizer of Eρ over L2
ρX
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Optimal solution

Global minimum of empirical error Ez

∀ sample of data z of size m
∃ interpolating function fo computable by a network with
m units fo ∈ spanmG

minf∈ spanmG Ez(f) = Ez(fo) = 0

holds for sigmoidal perceptrons and RBF and kernel units with
suitable kernels
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Approximate minimization

optimal solutions fo and the regression function fρ

may not be computable by networks with a reasonably small
number of hidden units

BUT they can be approximated by suboptimal solutions
= minima over spannG with n << m number of units

approximation of the problems (spanmG, Ez) and (spanmG, Eρ)

by a sequence of problems

{(spannG, Ez )|n = 1, . . . , m} and {(spannG, Eρ )|n = 1, . . . , m}

speed of convergence as a measure of complexity

inf
f∈ spannG

Ez(f) → 0 and inf
f∈ spannG

Eρ(f) → Eρ(fρ)
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Tools from approximation theory

minimization of expected error Eρ is equivalent to
minimization of the L2

ρX
-distance from the regression function fρ

minimization of empirical error Ez is equivalent to
minimization of the l2-distance from fz

fz(ui) = vi

⇒ we can use tools from approximation theory to
estimate speed of convergence of in�ma (minima) of
error functionals over spannG with n increasing
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Upper bound on rates of variable-basis approximation

Maurey (1981), Jones (1992), Barron (1993)
G a bounded subset of a Hilbert space (X, ‖.‖), sG = supg∈G ‖g‖
∀f ∈ conv G ∀ n

‖f − convnG‖ ≤
√

sG
2 − ‖f‖2

n

convn G = {∑n
i=1 ωigi |ωi ∈ [0, 1],

∑n
i=1 = 1, gi ∈ G}

Corollary: ∀f ∈ X ∀ n

‖f − spannG‖ ≤ sG‖f‖G√
n

‖.‖G = norm tailored to G
‖f‖G = inf{b > 0 | fb ∈ cl conv(G ∪ −G)}
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Comparison with linear approximation

number of hidden units = model complexity of the network
needed for approximation within ε grows as

O
(

1
ε

)2

in contrast to O
((

1
ε

)d
)

in linear approximation

d = number of variables of functions in G

= number of network inputs
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Norm tailored to a set of functions G

(X, ‖.‖) normed linear space, G bounded subset of X

G-variation = Minkowski functional of the
closed convex symmetric hull of G

‖f‖G = inf{b > 0 | fb ∈ cl conv(G ∪ −G)}

(1) G orthogonal
‖f‖G = ‖f‖1,G =

∑
g∈G |f.g|

l1-norm wrt G

(2) G characteristic
functions of half-spaces
(perceptrons)
variation wrt half-spaces
(generalization of total variation)
T (f) =

∫ |f ′| d = 1
≈ sum of \heights of steps"

l -norm
1

θ Heaviside activation
function
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Tightness of Maurey-Jones-Barron's theorem

Maurey-Jones-Barron's theorem is a worst-case result
holds for all functions in a ball in variational norm

Tightness results:
G orthonormal (constructive proof)
G sigmoidal perceptrons (proof by contradiction based on com-
parison of covering numbers)
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Improvements of Maurey-Jones-Barron's theorem

better rates of approximation for
suitable subsets of balls in variational norms

Lavretsky, 2002
de�ned a subset Fδ(G) of convG (for δ ∈ (0, 1])

∀f ∈ Fδ(G)
‖f − convnG‖ ≤ (1− δ)n−1(sG

2 − ‖f‖2)

missing characterization of Fδ(G), no examples
? is Fδ(G) non-empty ?

non transparent de�nition
Fδ(G) =

{
f ∈ cl conv G | (∀h ∈ conv G, f 6= h)(∃g ∈ G)(

(f − g) · (f − h) ≤ −δ ‖f − g‖ ‖f − h‖
)}
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Geometric rate for all functions in conv G

Kùrková, Sanguineti
(X, ‖.‖) a Hilbert space, G its bounded subset
∀f ∈ X ∃δf ∈ (0, 1]

‖f − convnG‖ ≤ (1− δf )n−1(sG
2 − ‖f‖2)

constructive proof, δf and incremental approximants are not de-
�ned uniquely
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Sets of functions with the same geometric rate

we can de�ne unique δ(f)

δ(f) = max
{
δ > 0 | (∀n)‖f − convnG‖ ≤ (1− δ2)n−1(sG

2 − ‖f‖2)
}

Aδ(G) = {f ∈ conv G | δ(f) = δ}

convG = ∪δ∈(0,1]Aδ(G)

? geometry of sets Aδ(G) ?
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Geometry of sets Aδ(G)

(X, ‖.‖) in�nite-dimensional separable Hilbert space
G orthornormal basis

∀k ≥ 3 ∃hk ∈ conv G with ‖hk‖ = 1√
2k

δ(hk)2 ≤ 1− 5−
1

k−1 e
− ln(k−1)

k−1

Aδ(G) are not convex and do not contain any ball (even any
sphere) in ‖.‖

in �nite dimensional spaces sets Aδ(G) contain balls in ‖.‖
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Conclusion

every function f in a Hilbert space can be approximated by spannG

with a rate bounded from above by ‖f‖G√
n

G-variation can be estimated using various methods (integral
representations, smoothing operators, maxima of partial deriva-
tives. . .)

MOREOVER

every function f in conv G can be approximated by spannG with
a rate bounded from above by (1 − δ(f))n−1(sG

2 − ‖f‖2) where
δ(f) ∈ (0, 1] is speci�c for each f

BUT geometry of sets with the same δ(f) is complicated, cha-
racterization is di�cult
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