Geometric Rates of Approximation by Neural Networks

Věra Kůrková
Institute of Computer Science Academy of Sciences of the Czech Republic Prague
Marcello Sanguineti
Universita di Genova, Genova

estimates of model complexity of neural networks
derived using tools from approximation theory

Learning $=$ optimization problem

minimize Φ over M
$\operatorname{span}_{n} G=$ linear combinations of n
functions corresponding to the type of computational units
expected error functional \mathcal{E}_{ρ} empirical error functional \mathcal{E}_{z} data: sample z or measure ρ
$\mathrm{n}=$ number of network units $=$ measure of network complexity

Problem

for given data (defined either by a probability measure or by a sample) find a suitable type of computational units (defined by a parameterized set of functions G)
the better choice of units, the smaller number n of computational units

Functional defined by a sample of data

$$
z=\left\{\left(u_{i}, v_{i}\right) \mid i=1, \ldots, m\right\} \subseteq \mathbb{R}^{d} \times \mathbb{R} \quad \text { sample of data }
$$

Empirical error functional

$$
\mathcal{E}_{z}(f)=\frac{1}{m} \sum_{i=1}^{m}\left(f\left(u_{i}\right)-v_{i}\right)^{2}
$$

Minimization of empirical error functional $=$ the least square method Gauss 1809, Legendre 1806

Functional defined by a probability measure
$\rho=$ non degenerate (no nonempty open set has measure zero) probability measure on $Z=X \times Y \quad \rho(Z)=1$

$$
X \subset \mathbb{R}^{d} \text { compact } \quad Y \subset \mathbb{R} \text { bounded }
$$

Expected error functional

$$
\mathcal{E}_{\rho}(f)=\int_{X \times Y}(f(u)-v)^{2} d \rho
$$

Traditional applications of the least square method

best fitting functions were searched for in LINEAR hypothesis spaces

\Rightarrow limitations on applications to high-dimensional data!

CURSE OF DIMENSIONALITY

the dimension n of a linear space needed for approximation of smooth functions of d variables within accuracy ε is
$\mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{d}\right)$
$\Rightarrow \quad$ model complexity n of LINEAR models grows
EXPONENTIALLY with the data dimension d

Hypothesis sets in neurocomputing

the best fitting functions are searched for in NONLINEAR and NONCONVEX hypothesis spaces

$$
\operatorname{span}_{n} G=\left\{\sum_{i=1}^{n} \omega_{i} g_{i} \mid \omega_{i} \in \mathbb{R}, g_{i} \in G\right\}
$$

$=$ set of functions computable by a network with one linear output and n hidden units computing functions from G
a nested family $\quad \ldots \subseteq \operatorname{span}_{n} G \subseteq \operatorname{span}_{n+1} G \subseteq \ldots$
variable-basis approximation scheme approximation from a dictionary

Computational units

perceptrons:
$G=\mathcal{P}_{d}(\sigma)=\left\{\sigma(v \cdot x+b) \mid v \in \mathbb{R}^{d}, b \in \mathrm{R}\right\}$
PLANE WAVES

radial-basis function (RBF) units:
$G=\mathcal{B}_{d}(\psi)=\left\{\psi(b\|x-v\|) \mid v \in \mathbb{R}^{d}, b \in \mathbb{R}\right\} \quad$ SPHERE WAVES

Optimal solution

Global minimum of expected error \mathcal{E}_{ρ}

Regression function

$$
f_{\rho}(x)=\int_{Y} y d \rho(y \mid x)
$$

$\rho(y \mid x)=$ conditional (w.r.t. x) probability measure on Y $\rho_{X}=$ marginal probability measure on $X\left(\forall S \subseteq X \quad \rho_{X}(S)=\right.$ $\rho\left(\pi_{X}^{-1}(S)\right), \quad \pi_{X}: X \times Y \rightarrow X$ projection $)$

$$
\min _{f \in \mathcal{L}_{\rho_{X}}^{2}} \mathcal{E}_{\rho}(f)=\mathcal{E}_{\rho}\left(f_{\rho}\right)
$$

the regression function f_{ρ} is global minimizer of \mathcal{E}_{ρ} over $\mathcal{L}_{\rho_{X}}^{2}$

Optimal solution

Global minimum of empirical error \mathcal{E}_{z}
\forall sample of data z of size m
\exists interpolating function f^{o} computable by a network with m units $f^{o} \in \operatorname{span}_{m} G$

$$
\min _{f \in \operatorname{span}_{m} G} \mathcal{E}_{z}(f)=\mathcal{E}_{z}\left(f^{o}\right)=0
$$

holds for sigmoidal perceptrons and RBF and kernel units with suitable kernels

Approximate minimization

optimal solutions f^{o} and the regression function f_{ρ} may not be computable by networks with a reasonably small number of hidden units

BUT they can be approximated by suboptimal solutions
$=$ minima over $\operatorname{span}_{n} G$ with $n \ll m$ number of units
approximation of the problems $\left(\operatorname{span}_{m} G, \mathcal{E}_{z}\right)$ and $\left(\operatorname{span}_{m} G, \mathcal{E}_{\rho}\right)$ by a sequence of problems

$$
\left\{\left(\operatorname{span}_{n} G, \mathcal{E}_{z}\right) \mid n=1, \ldots, m\right\} \text { and } \quad\left\{\left(\operatorname{span}_{n} G, \mathcal{E}_{\rho}\right) \mid n=1, \ldots, m\right\}
$$

speed of convergence as a measure of complexity
$\inf _{f \in \operatorname{span}_{n} G} \mathcal{E}_{z}(f) \rightarrow 0 \quad$ and $\quad \inf _{f \in \operatorname{span}_{n} G} \mathcal{E}_{\rho}(f) \rightarrow \mathcal{E}_{\rho}\left(f_{\rho}\right)$

Tools from approximation theory

minimization of expected error \mathcal{E}_{ρ} is equivalent to minimization of the $\mathcal{L}_{\rho_{X}}^{2}$-distance from the regression function f_{ρ}
minimization of empirical error \mathcal{E}_{z} is equivalent to minimization of the l^{2}-distance from f_{z}
$f_{z}\left(u_{i}\right)=v_{i}$
$\Rightarrow \quad$ we can use tools from approximation theory to estimate speed of convergence of infima (minima) of error functionals over $\operatorname{span}_{n} G$ with n increasing

Upper bound on rates of variable-basis approximation

Maurey (1981), Jones (1992), Barron (1993)
G a bounded subset of a Hilbert space $(X,\|\cdot\|), s_{G}=\sup _{g \in G}\|g\|$ $\forall f \in \operatorname{conv} G \quad \forall n$

$$
\left\|f-\operatorname{conv}_{n} G\right\| \leq \sqrt{\frac{s_{G}^{2}-\|f\|^{2}}{n}}
$$

$\operatorname{conv}_{n} G=\left\{\sum_{i=1}^{n} \omega_{i} g_{i} \mid \omega_{i} \in[0,1], \sum_{i=1}^{n}=1, g_{i} \in G\right\}$
Corollary: $\forall f \in X \quad \forall n$

$$
\left\|f-\operatorname{span}_{n} G\right\| \leq \frac{s_{G}\|f\|_{G}}{\sqrt{n}}
$$

$\|\cdot\|_{G}=$ norm tailored to G
$\|f\|_{G}=\inf \left\{b>0 \left\lvert\, \frac{f}{b} \in \operatorname{cl} \operatorname{conv}(G \cup-G)\right.\right\}$

Comparison with linear approximation

number of hidden units $=$ model complexity of the network needed for approximation within ε grows as

$$
\mathcal{O}\left(\frac{1}{\varepsilon}\right)^{2}
$$

in contrast to $\mathcal{O}\left(\left(\frac{1}{\varepsilon}\right)^{d}\right)$ in linear approximation
$d=$ number of variables of functions in G
$=$ number of network inputs

Norm tailored to a set of functions G

$(X,\|\cdot\|)$ normed linear space, G bounded subset of X
G-variation $=$ Minkowski functional of the
closed convex symmetric hull of G

$$
\|f\|_{G}=\inf \left\{b>0 \left\lvert\, \frac{f}{b} \in \operatorname{cl} \operatorname{conv}(G \cup-G)\right.\right\}
$$

(1) G orthogonal
$\|f\|_{G}=\|f\|_{1, G}=\sum_{g \in G}|f . g|$
l_{1}-norm wrt G
(2) G characteristic
functions of half-spaces
(perceptrons)
variation wrt half-spaces
(generalization of total variation)
$T(f)=\int\left|f^{\prime}\right| \quad d=1$
\approx sum of "heights of steps"

θ Heaviside activation function

Tightness of Maurey-Jones-Barron's theorem

Maurey-Jones-Barron's theorem is a worst-case result holds for all functions in a ball in variational norm

Tightness results:
G orthonormal (constructive proof)
G sigmoidal perceptrons (proof by contradiction based on comparison of covering numbers)

Improvements of Maurey-Jones-Barron's theorem

better rates of approximation for
suitable subsets of balls in variational norms

Lavretsky, 2002
defined a subset $F_{\delta}(G)$ of $\operatorname{conv} G$ (for $\left.\delta \in(0,1]\right)$
$\forall f \in F_{\delta}(G)$
$\left\|f-\operatorname{conv}_{n} G\right\| \leq(1-\delta)^{n-1}\left(s_{G}^{2}-\|f\|^{2}\right)$
missing characterization of $F_{\delta}(G)$, no examples
? is $F_{\delta}(G)$ non-empty ?
non transparent definition
$F_{\delta}(G)=\{f \in \operatorname{cl}$ conv $G \mid(\forall h \in \operatorname{conv} G, f \neq h)(\exists g \in G)$
$((f-g) \cdot(f-h) \leq-\delta\|f-g\|\|f-h\|)\}$

Geometric rate for all functions in $\operatorname{conv} G$

Kưrková, Sanguineti
$(X,\|\cdot\|)$ a Hilbert space, G its bounded subset
$\forall f \in X \exists \delta_{f} \in(0,1]$

$$
\left\|f-\operatorname{conv}_{n} G\right\| \leq\left(1-\delta_{f}\right)^{n-1}\left(s_{G}^{2}-\|f\|^{2}\right)
$$

constructive proof, δ_{f} and incremental approximants are not defined uniquely

Sets of functions with the same geometric rate
we can define unique $\delta(f)$

$$
\begin{aligned}
& \delta(f)=\max \left\{\delta>0 \mid(\forall n)\left\|f-\operatorname{conv}_{n} G\right\| \leq\left(1-\delta^{2}\right)^{n-1}\left(s_{G}^{2}-\|f\|^{2}\right)\right\} \\
& A_{\delta}(G)=\{f \in \operatorname{conv} G \mid \delta(f)=\delta\} \\
& \operatorname{conv} G=\cup_{\delta \in(0,1]} A_{\delta}(G)
\end{aligned}
$$

? geometry of sets $A_{\delta}(G)$?

Geometry of sets $A_{\delta}(G)$

($X,\|\cdot\|)$ infinite-dimensional separable Hilbert space G orthornormal basis
$\forall k \geq 3 \exists h_{k} \in \operatorname{conv} G$ with $\left\|h_{k}\right\|=\frac{1}{\sqrt{2 k}}$
$\delta\left(h_{k}\right)^{2} \leq 1-5^{-\frac{1}{k-1}} e^{-\frac{\ln (k-1)}{k-1}}$
$A_{\delta}(G)$ are not convex and do not contain any ball (even any sphere) in \|.\|
in finite dimensional spaces sets $A_{\delta}(G)$ contain balls in $\|$.

Conclusion

every function f in a Hilbert space can be approximated by $\operatorname{span}_{n} G$ with a rate bounded from above by $\frac{\|f\|_{G}}{\sqrt{n}}$
G-variation can be estimated using various methods (integral representations, smoothing operators, maxima of partial derivatives...)

MOREOVER

every function f in conv G can be approximated by $\operatorname{span}_{n} G$ with a rate bounded from above by $(1-\delta(f))^{n-1}\left(s_{G}^{2}-\|f\|^{2}\right)$ where $\delta(f) \in(0,1]$ is specific for each f

BUT geometry of sets with the same $\delta(f)$ is complicated, characterization is difficult

