Certification of proving termination of term rewriting by matrix interpretations

Adam Koprowski and Hans Zantema

Eindhoven University of Technology
Department of Mathematics and Computer Science
21 January 2008 SOFSEM'08
Nový Smokovec, High Tatras, Slovakia

Outline

(1) Background

- Termination of Term Rewriting
- Term Rewriting
- Termination of Term Rewriting
- Automation of Proving Termination
- Certification of Termination
- CoLoR project: Certification of Termination Proofs
- Certified Competition
(2) Formalization of Matrix Interpretations
- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations
(3) Conclusions \& Future Work

Outline

(9) Background

- Termination of Term Rewriting
- Term Rewriting
- Termination of Term Rewriting
- Automation of Proving Termination
- Certification of Termination
- CoLoR project: Certification of Termination Proofs
- Certified Competition
(2) Formalization of Matrix Interpretations
- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations
(3) Conclusions \& Future Work

Term Rewriting

- Term rewriting is a model of computations.

Example

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
\operatorname{fact}(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
\operatorname{fact}(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

fact($s(s(s(0))))$

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
\operatorname{fact}(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

$\operatorname{fact}(s(s(s(0)))) \rightarrow 3 * \operatorname{fact}(2)$

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
\operatorname{fact}(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

$\operatorname{fact}(s(s(s(0)))) \rightarrow^{+} 3 *(2 * \operatorname{fact}(1))$

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
\operatorname{fact}(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

$\operatorname{fact}(s(s(s(0)))) \rightarrow^{+} 3 *(2 *(1 * \operatorname{fact}(0)))$

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
f a c t(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

$$
\operatorname{fact}(s(s(s(0)))) \rightarrow^{+} 3 *(2 *(1 * 1))
$$

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
\operatorname{fact}(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

$\operatorname{fact}(s(s(s(0)))) \rightarrow^{+} 3 *(2 *((0 * 1)+1))$

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
f a c t(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

$$
\operatorname{fact}(s(s(s(0)))) \rightarrow^{+} 3 *(2 *(0+1))
$$

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
\operatorname{fact}(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

$\operatorname{fact}(s(s(s(0)))) \rightarrow^{+} 3 *(2 * 1)$

Term Rewriting

- Term rewriting is a model of computations.

Example

$$
\begin{aligned}
0+y & \rightarrow y \\
s(x)+y & \rightarrow s(x+y) \\
0 * y & \rightarrow 0 \\
s(x) * y & \rightarrow(x * y)+y \\
\operatorname{fact}(0) & \rightarrow s(0) \\
\operatorname{fact}(s(x)) & \rightarrow s(x) * \operatorname{fact}(x)
\end{aligned}
$$

$\operatorname{fact}(s(s(s(0)))) \rightarrow^{+} 6$

Termination of Term Rewriting

- One of the most important properties of term rewriting is termination.

Definition
 A term rewriting system (TRS) is teminating if does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example

TU/e

Termination of Term Rewriting

- One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example

TU/e

Termination of Term Rewriting

- One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example

TU/e

Termination of Term Rewriting

- One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example

Termination of Term Rewriting

- One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example

$$
a(a(x)) \rightarrow a(b(a(x)))
$$

Termination of Term Rewriting

- One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example

$$
a a \rightarrow a b a
$$

Automation of Proving Termination

- Recently the emphasis is on automation.
- There is a number of tools for proving termination automatically. (AProVE, Cariboo, Cime, JamBox, MatchBox, MultumNonMulta, MuTerm, Teparla, Torpa, TPA, TTT, TTTbox, ...)
- An annual termination competition is organized where those tools compete on a number of problems.
- Both the tools and proofs produced by them are getting more and more complex.
- Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs.

TU/e

Automation of Proving Termination

- Recently the emphasis is on automation.
- There is a number of tools for proving termination automatically. (AProVE, Cariboo, Cime, JamBox, MatchBox, MultumNonMulta, MuTerm, Teparla, Torpa, TPA, TTT, TTTbox, ...)
- An annual
is organized where those tools
compete on a number of problems.
- Both the tools and proofs produced by them are getting more and
- Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs.

Automation of Proving Termination

- Recently the emphasis is on automation.
- There is a number of tools for proving termination automatically. (AProVE, Cariboo, Cime, JamBox, MatchBox, MultumNonMulta, MuTerm, Teparla, Torpa, TPA, TTT, TTTbox, ...)
- An annual termination competition is organized where those tools compete on a number of problems.
- Both the tools and proofs produced by them are getting more and
- Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs.

Automation of Proving Termination

－Recently the emphasis is on automation．
－There is a number of tools for proving termination automatically． （AProVE，Cariboo，Cime，JamBox，MatchBox，MultumNonMulta， MuTerm，Teparla，Torpa，TPA，TTT，TTTbox，．．．）
－An annual termination competition is organized where those tools compete on a number of problems．
－Both the tools and proofs produced by them are getting more and more complex．
－Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs．

Automation of Proving Termination

- Recently the emphasis is on automation.
- There is a number of tools for proving termination automatically. (AProVE, Cariboo, Cime, JamBox, MatchBox, MultumNonMulta, MuTerm, Teparla, Torpa, TPA, TTT, TTTbox, ...)
- An annual termination competition is organized where those tools compete on a number of problems.
- Both the tools and proofs produced by them are getting more and more complex.
- Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs.

Outline

(1) Background

- Termination of Term Rewriting
- Term Rewriting
- Termination of Term Rewriting
- Automation of Proving Termination
- Certification of Termination
- CoLoR project: Certification of Termination Proofs
- Certified Competition
(2) Formalization of Matrix Interpretations
- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations
(3) Conclusions \& Future Work

CoLoR overview

oLo
CoLoR: Coq Library on Rewriting and Termination.Goal: certification of termination proofs produced by varioustermination provers.Project started in March 2004 by Frédéric Blanqui.
How to do that? CoLoR approach:
common format for termination proofs.

- CoLoR: a Coq library of results on termination.
a tool for translation from proofs in TPG format to Coqproofs, using results from CoLoR.

CoLoR overview

oLo
CoLoR: Coq Library on Rewriting and Termination.Goal: certification of termination proofs produced by varioustermination provers.Project started in March 2004 by Frédéric Blanqui.How to do that? CoLoR approach:

CoLoR overview

oLo
CoLoR: Coq Library on Rewriting and Termination.Goal: certification of termination proofs produced by varioustermination provers.Project started in March 2004 by Frédéric Blanqui.
How to do that? CoLoR approach:

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- oR a Coq library of results on termination.
a tool for translation from proofs in TPG format to Coqproofs, using results from CoLoR.

CoLoR overview

oLo
CoLoR: Coq Library on Rewriting and Termination.Goal: certification of termination proofs produced by varioustermination provers.Project started in March 2004 by Frédéric Blanqui.

How to do that? CoLoR approach:

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
a tool for translation from proofs in TPG format to Coq
proofs, using results from CoLoR.

CoLoR overview

oLo
CoLoR: Coq Library on Rewriting and Termination.
Goal: certification of termination proofs produced by varioustermination provers.Project started in March 2004 by Frédéric Blanqui.
How to do that? CoLoR approach:

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.

CoLoR overview

oLo

CoLoR：Coq Library on Rewriting and Termination．
Goal：certification of termination proofs produced by various termination provers．
Project started in March 2004 by Frédéric Blanqui．

How to do that？CoLoR approach：
－TPG：common format for termination proofs．
－Tools output proofs in TPG format．
－CoLoR：a Coq library of results on termination．
－Rainbow：a tool for translation from proofs in TPG format to Coq proofs，using results from CoLoR．

CoLoR architecture overview

Certified termination techniques

TU/e

CoLoR architecture overview

TU/e

CoLoR architecture overview

TU/e

Certified competition

－In the termination competition in 2007 a new＂certified＂category was introduced．
－Participants：
－TPA＋CoLoR was the winner with the score of 354 ．
－Every successful proof of TPA was using matrix interpretations．

TU／e

Certified competition

－In the termination competition in 2007 a new＂certified＂category was introduced．
－Participants：
－CiME＋A3PAT
－TPA + CoLoR
－ $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}+\mathrm{CoLoR}$
－TPA＋CoLoR was the winner with the score of 354.
－Every successful proof of TPA was using matrix interpretations．

TU／e

technische
universitent
eindhoven
4 ロ 4 4号＞4 三＞4 三＞三

Certified competition

- In the termination competition in 2007 a new "certified" category was introduced.
- Participants:
- CiME + A3PAT
- TPA + CoLoR
- $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}+$ CoLoR
- TPA+ CoLoR was the winner with the score of 354 .
- Every successful proof of TPA was using matrix interpretations.

Certified competition

- In the termination competition in 2007 a new "certified" category was introduced.
- Participants:
- CiME + A3PAT
- TPA + CoLoR
- $\mathrm{T}_{\mathrm{T}} \mathrm{T}_{2}+$ CoLoR
- TPA+ CoLoR was the winner with the score of 354 .
- Every successful proof of TPA was using matrix interpretations.

Outline

(1) Background

- Termination of Term Rewriting
- Term Rewriting
- Termination of Term Rewriting
- Automation of Proving Termination
- Certification of Termination
- CoLoR project: Certification of Termination Proofs
- Certified Competition
(2) Formalization of Matrix Interpretations
- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations
(3) Conclusions \& Future Work

TU/e

General idea

- A popular approach is interpretation into a well-founded monotone algebra.
- Domain: $\mathbb{N}, f\left(x_{1}, \ldots, x_{n}\right)$ interpreted as polynomial $\mathbb{N}\left[x_{1}, \ldots, x_{n}\right]$ \Longrightarrow polynomial interpretations (Lankford '79)
- Domain: $\mathbb{N}^{d}, f\left(\overrightarrow{x_{1}}, \ldots, \overrightarrow{x_{n}}\right)=A_{1} \overrightarrow{x_{1}}+\ldots+A_{n} \overrightarrow{x_{n}}+\vec{b}$, with $A_{i} \in \mathbb{N}^{d \times d}, \vec{b} \in \mathbb{N}^{d}$
\Longrightarrow matrix interpretations (Endrullis, Waldmann, Zantema '06)

TU/e

General idea

- A popular approach is interpretation into a well-founded monotone algebra.
- Domain: $\mathbb{N}, f\left(x_{1}, \ldots, x_{n}\right)$ interpreted as polynomial $\mathbb{N}\left[x_{1}, \ldots, x_{n}\right]$ \Longrightarrow polynomial interpretations (Lankford '79)

TU/e

General idea

- A popular approach is interpretation into a well-founded monotone algebra.
- Domain: $\mathbb{N}, f\left(x_{1}, \ldots, x_{n}\right)$ interpreted as polynomial $\mathbb{N}\left[x_{1}, \ldots, x_{n}\right]$ \Longrightarrow polynomial interpretations (Lankford '79)
- Domain: $\mathbb{N}^{d}, f\left(\overrightarrow{x_{1}}, \ldots, \overrightarrow{x_{n}}\right)=A_{1} \overrightarrow{x_{1}}+\ldots+A_{n} \overrightarrow{x_{n}}+\vec{b}$, with $A_{i} \in \mathbb{N}^{d \times d}, \vec{b} \in \mathbb{N}^{d}$
\Longrightarrow matrix interpretations (Endrullis, Waldmann, Zantema '06)

TU/e

Example

Example

$$
\begin{aligned}
a(a(x)) & \rightarrow a(b(a(x), c)) \\
a(x) & =\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1} \\
b(x, y) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) x+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) y \\
c & =\binom{0}{0}
\end{aligned}
$$

$$
\begin{aligned}
& {[b(a(x), c)]=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{0}{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x} \\
& {[a(b(a(x), c))]=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}} \\
& {[a(a(x))]=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}\right)+\binom{0}{1}} \\
& =\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1} \\
& \binom{u_{1}}{\dddot{u}_{d}} \gtrsim\binom{v_{1}}{v_{d}} \text { iff } \forall i, u_{i} \geq \mathbb{N} v_{i} \\
& \binom{u_{1}}{u_{d}}>\binom{v_{1}}{v_{d}} \text { iff }\binom{u_{1}}{u_{d}}>\binom{v_{1}}{v_{d}} \wedge u_{1}>N v_{1}
\end{aligned}
$$

Example

Example

$$
\begin{aligned}
a(a(x)) & \rightarrow a(b(a(x), c)) \\
a(x) & =\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1} \\
b(x, y) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) x+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) y \\
c & =\binom{0}{0}
\end{aligned}
$$

Example

Example

$$
\begin{aligned}
a(a(x)) & \rightarrow a(b(a(x), c)) \\
a(x) & =\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1} \\
b(x, y) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) x+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) y \\
c & =\binom{0}{0}
\end{aligned}
$$

$$
[b(a(x), c)]=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{0}{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x
$$

$$
[a(b(a(x), c))]=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}
$$

$$
=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}
$$

$$
[a(a(x))]=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}\right)+\binom{0}{1} \quad=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{1}{1}
$$

Example

Example

$$
\begin{aligned}
a(a(x)) & \rightarrow a(b(a(x), c)) \\
a(x) & =\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1} \\
b(x, y) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) x+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) y \\
c & =\binom{0}{0}
\end{aligned}
$$

$$
[b(a(x), c)]=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}\right)+\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\binom{0}{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x
$$

$$
[a(b(a(x), c))]=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}
$$

$$
=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}
$$

$$
[a(a(x))]=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{0}{1}\right)+\binom{0}{1}
$$

$$
=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right) x+\binom{1}{1}
$$

$$
\begin{aligned}
& \binom{u_{1}}{\dddot{u}_{d}} \gtrsim\binom{v_{1}}{\dddot{v}_{d}} \text { iff } \forall i, u_{i} \geq_{\mathbb{N}} v_{i} \\
& \binom{u_{1}}{\dddot{u}_{d}}>\binom{v_{1}}{\dddot{v}_{d}} \text { iff }\binom{u_{1}}{\dddot{u}_{d}} \gtrsim\binom{v_{1}}{\dddot{v}_{d}} \wedge u_{1}>_{\mathbb{N}} v_{1}
\end{aligned}
$$

Outline

(1) Background

- Termination of Term Rewriting
- Term Rewriting
- Termination of Term Rewriting
- Automation of Proving Termination
- Certification of Termination
- CoLoR project: Certification of Termination Proofs
- Certified Competition
(2) Formalization of Matrix Interpretations
- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations
(3) Conclusions \& Future Work

TU/e

Monotone algebras

Definition (An extended weakly monotone Σ-algebra)

An extended weakly monotone Σ-algebra $(A,[\cdot],>, \gtrsim)$ is a Σ-algebra $(A,[\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that:

- > is well-founded;
- $>\cdot \gtrsim \subseteq>$;
- for every $f \in \Sigma$ the operation $[f]$ is monotone with respect to $>$.

Theorem

Let $\mathcal{R}, \mathcal{R}^{\prime}$ be TRSs over a signature $\Sigma,(A,[\cdot],>, \gtrsim)$ be an extended monotone \sum-algebra such that:

Then $\mathrm{SN}(\mathcal{R})$ implies $\mathrm{SN}\left(\mathcal{R} \cup \mathcal{R}^{\prime}\right)$.

Monotone algebras

Definition (An extended weakly monotone Σ-algebra)

An extended weakly monotone Σ-algebra $(A,[\cdot],>, \gtrsim)$ is a Σ-algebra $(A,[\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that:

- $>$ is well-founded;
- $>\cdot \gtrsim \subseteq>$;
- for every $f \in \Sigma$ the operation $[f]$ is monotone with respect to $>$.

Theorem

Let $\mathcal{R}, \mathcal{R}^{\prime}$ be TRSs over a signature $\Sigma,(A,[\cdot],>, \gtrsim)$ be an extended monotone Σ-algebra such that:

- $[\ell, \alpha] \gtrsim[r, \alpha]$ for every rule $\ell \rightarrow r$ in \mathcal{R}, for all $\alpha: \mathcal{X} \rightarrow A$ and
- $[\ell, \alpha]>[r, \alpha]$ for every rule $\ell \rightarrow r$ in \mathcal{R}^{\prime} and for all $\alpha: \mathcal{X} \rightarrow A$.

Then $\mathrm{SN}(\mathcal{R})$ implies $\mathrm{SN}\left(\mathcal{R} \cup \mathcal{R}^{\prime}\right)$.

Formalization of monotone algebras

- Monotone algebras are formalized as a functor.
- We additionally require $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ to be decidable. (where $s>_{\mathcal{T}} t \equiv \forall \alpha: \mathcal{X} \rightarrow A,[s, \alpha]>[t, \alpha]$)
- More precisely the requirement is to provide a relation $>$, such that
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

Formalization of monotone algebras

- Monotone algebras are formalized as a functor.
- We additionally require $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ to be decidable.
(where $s>_{\mathcal{T}} t \equiv \forall \alpha: \mathcal{X} \rightarrow A,[s, \alpha]>[t, \alpha]$)
- More precisely the requirement is to provide a relation \gg, such that
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

Formalization of monotone algebras

- Monotone algebras are formalized as a functor.
- We additionally require $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ to be decidable.
(where $s>_{\mathcal{T}} t \equiv \forall \alpha: \mathcal{X} \rightarrow A,[s, \alpha]>[t, \alpha]$)
- More precisely the requirement is to provide a relation \gg, such that
- $\ggg_{\mathcal{T}}$ and
- \gg is decidable
- similarly for \gtrsim.
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

Formalization of monotone algebras

- Monotone algebras are formalized as a functor.
- We additionally require $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ to be decidable.
(where $s>_{\mathcal{T}} t \equiv \forall \alpha: \mathcal{X} \rightarrow A,[s, \alpha]>[t, \alpha]$)
- More precisely the requirement is to provide a relation \gg, such that
- $\ggg_{\mathcal{T}}$ and
- \gg is decidable
- similarly for \gtrsim.
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

Outline

(1) Background

- Termination of Term Rewriting
- Term Rewriting
- Termination of Term Rewriting
- Automation of Proving Termination
- Certification of Termination
- CoLoR project: Certification of Termination Proofs
- Certified Competition
(2) Formalization of Matrix Interpretations
- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations
(3) Conclusions \& Future Work

TU/e

Formalization of matrices

- Matrices over arbitrary semi-ring of coefficients.
- a number of basic operations over matrices such as:

- and a number of basic properties such as:

TU/e

Formalization of matrices

- Matrices over arbitrary semi-ring of coefficients.
- a number of basic operations over matrices such as:

$$
[\cdot], \quad M_{i, j}, \quad M+N, \quad M * N, \quad M^{T}, \ldots
$$

- and a number of basic properties such as:

TU/e

Formalization of matrices

- Matrices over arbitrary semi-ring of coefficients.
- a number of basic operations over matrices such as:

$$
[\cdot], \quad M_{i, j}, \quad M+N, \quad M * N, \quad M^{T}, \ldots
$$

- and a number of basic properties such as:
- $M+N=N+M$,
- $M *(N * P)=(M * N) * P$
- monotonicity of $*$
- ...

Outline

（1）Background
－Termination of Term Rewriting
－Term Rewriting
－Termination of Term Rewriting
－Automation of Proving Termination
－Certification of Termination
－CoLoR project：Certification of Termination Proofs
－Certified Competition
（2）Formalization of Matrix Interpretations
－Matrix Interpretations Method
－Monotone algebras
－Matrices
－Matrix interpretations
（3）Conclusions \＆Future Work
TU／e

Polynomial interpretations in the setting of monotone algebras

- $A=\mathbb{Z}$,
$\rightarrow>=>_{\mathbb{Z}}, \gtrsim=\geq \mathbb{Z}$,
- interpretations represented by polynomials $\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=P_{\mathbb{Z}}\left(x_{1}, \ldots, x_{n}\right)$,
- $>_{\text {〒 }}$ not decidable (positiveness of polynomial) - heuristics required.

TU/e

Polynomial interpretations in the setting of monotone algebras

- $A=\mathbb{Z}$,
- $>=>_{\mathbb{Z}}, \gtrsim=\geq_{\mathbb{Z}}$,
- interpretations represented by polynomials $\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=P_{\mathbb{Z}}\left(x_{1}, \ldots, x_{n}\right)$,
- $>_{\mathcal{T}}$ not decidable (positiveness of polynomial) - heuristics required.

TU/e

Polynomial interpretations in the setting of monotone algebras

- $A=\mathbb{Z}$,
- $>=>_{\mathbb{Z}}, \gtrsim=\geq_{\mathbb{Z}}$,
- interpretations represented by polynomials

$$
\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=P_{\mathbb{Z}}\left(x_{1}, \ldots, x_{n}\right)
$$

- $>_{\mathcal{T}}$ not decidable (positiveness of polynomial) — heuristics required.

Polynomial interpretations in the setting of monotone algebras

－$A=\mathbb{Z}$ ，
－$>=>_{\mathbb{Z}}, \gtrsim=\geq_{\mathbb{Z}}$ ，
－interpretations represented by polynomials $\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=P_{\mathbb{Z}}\left(x_{1}, \ldots, x_{n}\right)$,
－$>_{\mathcal{T}}$ not decidable（positiveness of polynomial）－heuristics required．

Matrix interpretations in the setting of monotone algebras

－fix a dimension d ，
－$A=\mathbb{N}^{d}$ ，
－$\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right)$ iff $\forall i, u_{i} \geq_{\mathbb{N}} v_{i}$ ，
－$\left(u_{1}, \ldots, u_{d}\right)>\left(v_{1}, \ldots, v_{d}\right)$ iff $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right) \wedge u_{1}>_{\mathbb{N}} v_{1}$ ，
－interpretations represented as：
$\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=M_{1} x_{1}+\ldots+M_{n} x_{n}+v$
where $M_{i} \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^{d}$ ，
$->_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing we do not need to prove completeness of their characterization．
－Domain fixed to \mathbb{N} with natural orders $>$ and \geq ．
universiteit
eindhoven
$4 \square>4$ 吕 >4 三 >4 引

Matrix interpretations in the setting of monotone algebras

－fix a dimension d ，
－$A=\mathbb{N}^{d}$ ，
－$\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right)$ iff $\forall i, u_{i} \geq_{\mathbb{N}} v_{i}$ ，
－$\left(u_{1}, \ldots, u_{d}\right)>\left(v_{1}, \ldots, v_{d}\right)$ iff $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right) \wedge u_{1}>_{\mathbb{N}} v_{1}$ ，
－interpretations represented as：
$\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=M_{1} x_{1}+\ldots+M_{n} x_{n}+v$
where $M_{i} \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^{d}$ ，
－$>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing we do not need to prove completeness of their characterization．
－Domain fixed to \mathbb{N} with natural orders $>$ and \geq ．

Matrix interpretations in the setting of monotone algebras

－fix a dimension d ，
－$A=\mathbb{N}^{d}$ ，
－$\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right)$ iff $\forall i, u_{i} \geq_{\mathbb{N}} v_{i}$ ，
－$\left(u_{1}, \ldots, u_{d}\right)>\left(v_{1}, \ldots, v_{d}\right)$ iff $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right) \wedge u_{1}>_{\mathbb{N}} v_{1}$ ，
－interpretations represented as：

where $M_{i} \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^{d}$ ，
－$>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing we do not need to prove completeness of their characterization．
－Domain fixed to \mathbb{N} with natural orders $>$ and \geq ．

Matrix interpretations in the setting of monotone algebras

- fix a dimension d,
- $A=\mathbb{N}^{d}$,
- $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right)$ iff $\forall i, u_{i} \geq_{\mathbb{N}} v_{i}$,
- $\left(u_{1}, \ldots, u_{d}\right)>\left(v_{1}, \ldots, v_{d}\right)$ iff $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right) \wedge u_{1}>_{\mathbb{N}} v_{1}$,
- interpretations represented as:

where $M_{i} \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^{d}$,
- $>_{\mathcal{T}}$ and $>_{\mathcal{T}}$ are decidable in this case but thanks to introducing we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders $>$ and \geq.

Matrix interpretations in the setting of monotone algebras

- fix a dimension d,
- $A=\mathbb{N}^{d}$,
- $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right)$ iff $\forall i, u_{i} \geq_{\mathbb{N}} v_{i}$,
- $\left(u_{1}, \ldots, u_{d}\right)>\left(v_{1}, \ldots, v_{d}\right)$ iff $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right) \wedge u_{1}>_{\mathbb{N}} v_{1}$,
- interpretations represented as:
$\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=M_{1} x_{1}+\ldots+M_{n} x_{n}+v$ where $M_{i} \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^{d}$,
$->_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders $>$ and $>$.

Matrix interpretations in the setting of monotone algebras

- fix a dimension d,
- $A=\mathbb{N}^{d}$,
- $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right)$ iff $\forall i, u_{i} \geq_{\mathbb{N}} v_{i}$,
- $\left(u_{1}, \ldots, u_{d}\right)>\left(v_{1}, \ldots, v_{d}\right)$ iff $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right) \wedge u_{1}>_{\mathbb{N}} v_{1}$,
- interpretations represented as:
$\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=M_{1} x_{1}+\ldots+M_{n} x_{n}+v$ where $M_{i} \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^{d}$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders $>$ and \geq.

Matrix interpretations in the setting of monotone algebras

- fix a dimension d,
- $A=\mathbb{N}^{d}$,
- $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right)$ iff $\forall i, u_{i} \geq_{\mathbb{N}} v_{i}$,
- $\left(u_{1}, \ldots, u_{d}\right)>\left(v_{1}, \ldots, v_{d}\right)$ iff $\left(u_{1}, \ldots, u_{d}\right) \gtrsim\left(v_{1}, \ldots, v_{d}\right) \wedge u_{1}>_{\mathbb{N}} v_{1}$,
- interpretations represented as:
$\left[f\left(x_{1}, \ldots, x_{n}\right)\right]=M_{1} x_{1}+\ldots+M_{n} x_{n}+v$
where $M_{i} \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^{d}$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders $>$ and \geq.

Conclusions \& Future Work

We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:

- extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup\{-\infty\}$).
- Formalization of further termination techniques.
- Collaboration with termination tools' authors to extend applicability of CoLoR.

TU/e

Conclusions \& Future Work

We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:
 - extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup\{-\infty\}$).
 - Formalization of further termination techniques.
 - Collaboration with termination tools' authors to extend applicability of CoLoR.

TU/e

Conclusions \& Future Work

We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:

- extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup\{-\infty\}$).
- Formalization of further termination techniques.
- Collaboration with termination tools' authors to extend applicability of CoLoR.

Conclusions \& Future Work

We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:

- extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup\{-\infty\}$).
- Formalization of further termination techniques.
- Collaboration with termination tools' authors to extend applicability of CoLoR.

Conclusions \& Future Work

We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:

- extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup\{-\infty\}$).
- Formalization of further termination techniques.
- Collaboration with termination tools' authors to extend applicability of CoLoR.

The end

Thank you for your attention.

Homework

If you are bored in the evening (or like puzzles) are the following systems terminating:

Example

$$
\begin{aligned}
a a & \rightarrow b c \\
b b & \rightarrow a c \\
c c & \rightarrow a b
\end{aligned}
$$

Example

aab \rightarrow babaa

TU/e

Homework

If you are bored in the evening (or like puzzles) are the following systems terminating:

Example

$$
\begin{aligned}
a a & \rightarrow b c \\
b b & \rightarrow a c \\
c c & \rightarrow a b
\end{aligned}
$$

Example

$$
\begin{aligned}
a a b & \rightarrow b a b a a \\
b b & \rightarrow
\end{aligned}
$$

TU/e

