Certification of proving termination of term rewriting by matrix interpretations

Adam Koprowski and Hans Zantema

Eindhoven University of Technology Department of Mathematics and Computer Science

21 January 2008 SOFSEM'08 Nový Smokovec, High Tatras, Slovakia

A.Koprowski, H.Zantema (TU/e)

Certification of proving termination ...

SOFSEM'08

1/24

Outline

Background

- Termination of Term Rewriting
 - Term Rewriting
 - Termination of Term Rewriting
 - Automation of Proving Termination
- Certification of Termination
 - CoLoR project: Certification of Termination Proofs
 - Certified Competition

Formalization of Matrix Interpretations

- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations

- 3 >

Outline

Background

- Termination of Term Rewriting
 - Term Rewriting
 - Termination of Term Rewriting
 - Automation of Proving Termination
- Certification of Termination
 - CoLoR project: Certification of Termination Proofs
 - Certified Competition

Formalization of Matrix Interpretations

- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations

3 Conclusions & Future Work

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Term Rewriting

• Term rewriting is a model of computations.

Example

$$0 + y \rightarrow y$$

 $s(x) + y \rightarrow s(x + y)$
 $0 * y \rightarrow 0$
 $s(x) * y \rightarrow (x * y) + y$
 $fact(0) \rightarrow s(0)$
 $fact(s(x)) \rightarrow s(x) * fact(x)$

A.Koprowski, H.Zantema (TU/e)

イロト イヨト イヨト

IU/e

Example

$$0 + y \rightarrow y$$

 $s(x) + y \rightarrow s(x + y)$
 $0 * y \rightarrow 0$
 $s(x) * y \rightarrow (x * y) + y$
 $fact(0) \rightarrow s(0)$
 $fact(s(x)) \rightarrow s(x) * fact(x)$

A.Koprowski, H.Zantema (TU/e)

• • • • • • • • • • • •

IU/e

Example

$$0 + y \rightarrow y$$

 $s(x) + y \rightarrow s(x + y)$
 $0 * y \rightarrow 0$
 $s(x) * y \rightarrow (x * y) + y$
 $fact(0) \rightarrow s(0)$
 $fact(s(x)) \rightarrow s(x) * fact(x)$

fact(*s*(*s*(*s*(0))))

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

IU/e

Example

$$0 + y \rightarrow y$$

 $s(x) + y \rightarrow s(x + y)$
 $0 * y \rightarrow 0$
 $s(x) * y \rightarrow (x * y) + y$
 $fact(0) \rightarrow s(0)$
 $fact(s(x)) \rightarrow s(x) * fact(x)$

 $fact(s(s(s(0)))) \rightarrow 3 * fact(2)$

IU/e universitei eindhoven

Example

$$0 + y \rightarrow y$$

 $s(x) + y \rightarrow s(x + y)$
 $0 * y \rightarrow 0$
 $s(x) * y \rightarrow (x * y) + y$
 $fact(0) \rightarrow s(0)$
 $fact(s(x)) \rightarrow s(x) * fact(x)$

 $fact(s(s(s(0)))) \rightarrow^+ 3 * (2 * fact(1))$

IU/e

Example

$$0 + y \rightarrow y$$

 $s(x) + y \rightarrow s(x + y)$
 $0 * y \rightarrow 0$
 $s(x) * y \rightarrow (x * y) + y$
 $fact(0) \rightarrow s(0)$
 $fact(s(x)) \rightarrow s(x) * fact(x)$

 $fact(s(s(s(0)))) \rightarrow^+ 3 * (2 * (1 * fact(0)))$

IU/e

Example

$$0 + y \rightarrow y$$

 $s(x) + y \rightarrow s(x + y)$
 $0 * y \rightarrow 0$
 $s(x) * y \rightarrow (x * y) + y$
 $fact(0) \rightarrow s(0)$
 $fact(s(x)) \rightarrow s(x) * fact(x)$

 $fact(s(s(s(0)))) \to^+ 3 * (2 * (1 * 1))$

IU/e universitei eindhoven

Example

$$0 + y \rightarrow y$$

 $s(x) + y \rightarrow s(x + y)$
 $0 * y \rightarrow 0$
 $s(x) * y \rightarrow (x * y) + y$
 $fact(0) \rightarrow s(0)$
 $fact(s(x)) \rightarrow s(x) * fact(x)$

 $fact(s(s(s(0)))) \rightarrow^{+} 3 * (2 * ((0 * 1) + 1)))$

IU/e

Example

$$0 + y
ightarrow y$$

 $s(x) + y
ightarrow s(x + y)$
 $0 * y
ightarrow 0$
 $s(x) * y
ightarrow (x * y) + y$
 $fact(0)
ightarrow s(0)$
 $fact(s(x))
ightarrow s(x) * fact(x)$

$$fact(s(s(s(0)))) \to^+ 3 * (2 * (0 + 1)))$$

IU/e

イロト イヨト イヨト イ

Example

$$0 + y \rightarrow y$$

 $s(x) + y \rightarrow s(x + y)$
 $0 * y \rightarrow 0$
 $s(x) * y \rightarrow (x * y) + y$
 $fact(0) \rightarrow s(0)$
 $fact(s(x)) \rightarrow s(x) * fact(x)$

 $fact(s(s(s(0)))) \rightarrow^+ 3 * (2 * 1))$

IU/e universitei eindhoven

Example

$$0 + y
ightarrow y$$

 $s(x) + y
ightarrow s(x + y)$
 $0 * y
ightarrow 0$
 $s(x) * y
ightarrow (x * y) + y$
 $fact(0)
ightarrow s(0)$
 $fact(s(x))
ightarrow s(x) * fact(x)$

$$fact(s(s(s(0)))) \rightarrow^+ 6$$

IU/e

• • • • • • • • • • • •

Termination of Term Rewriting

• One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example TU/e A.Koprowski, H.Zantema (TU/e) Certification of proving termination ... SOFSEM'08 5/24

• One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example

• One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

• In general the problem is undecidable.

 However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example

• One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Termination of Term Rewriting

• One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

Example

$a(a(x)) \rightarrow a(b(a(x)))$

A.Koprowski, H.Zantema (TU/e)

Termination of Term Rewriting

• One of the most important properties of term rewriting is termination.

Definition

A term rewriting system (TRS) is terminating if it does not admit infinite reductions.

- In general the problem is undecidable.
- However, there is a (ever increasing) number of techniques for proving termination of term rewriting.

• Recently the emphasis is on automation.

- There is a number of tools for proving termination automatically. (AProVE, Cariboo, Cime, JamBox, MatchBox, MultumNonMulta, MuTerm, Teparla, Torpa, TPA, TTT, TTTbox, ...)
- An annual termination competition is organized where those tools compete on a number of problems.
- Both the tools and proofs produced by them are getting more and more complex.
- Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs.

Automation of Proving Termination

- Recently the emphasis is on automation.
- There is a number of tools for proving termination automatically. (AProVE, Cariboo, Cime, JamBox, MatchBox, MultumNonMulta, MuTerm, Teparla, Torpa, TPA, TTT, TTTbox, ...)
- An annual termination competition is organized where those tools compete on a number of problems.
- Both the tools and proofs produced by them are getting more and more complex.
- Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs.

- Recently the emphasis is on automation.
- There is a number of tools for proving termination automatically. (AProVE, Cariboo, Cime, JamBox, MatchBox, MultumNonMulta, MuTerm, Teparla, Torpa, TPA, TTT, TTTbox, ...)
- An annual termination competition is organized where those tools compete on a number of problems.
- Both the tools and proofs produced by them are getting more and more complex.
- Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs.

- Recently the emphasis is on automation.
- There is a number of tools for proving termination automatically. (AProVE, Cariboo, Cime, JamBox, MatchBox, MultumNonMulta, MuTerm, Teparla, Torpa, TPA, TTT, TTTbox, ...)
- An annual termination competition is organized where those tools compete on a number of problems.
- Both the tools and proofs produced by them are getting more and more complex.
- Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs.

SOFSEM'08

6/24

- Recently the emphasis is on automation.
- There is a number of tools for proving termination automatically. (AProVE, Cariboo, Cime, JamBox, MatchBox, MultumNonMulta, MuTerm, Teparla, Torpa, TPA, TTT, TTTbox, ...)
- An annual termination competition is organized where those tools compete on a number of problems.
- Both the tools and proofs produced by them are getting more and more complex.
- Reliability of such tools is a challenge and indeed every year we observe some disqualifications due to erroneous proofs.

• • • • • • • • • • • •

SOFSEM'08

6/24

Outline

Background

- Termination of Term Rewriting
 - Term Rewriting
 - Termination of Term Rewriting
 - Automation of Proving Termination

• Certification of Termination

- CoLoR project: Certification of Termination Proofs
- Certified Competition

Formalization of Matrix Interpretations

- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations

3 Conclusions & Future Work

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

CoLoR: Coq Library on Rewriting and Termination. Goal: certification of termination proofs produced by various termination provers. Project started in March 2004 by Frédéric Blanqui.

How to do that? CoLoR approach:

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoR: Coq Library on Rewriting and Termination. Goal: certification of termination proofs produced by various termination provers. Project started in March 2004 by Frédéric Blangui.

How to do that? CoLoR approach:

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

CoLoR: Coq Library on Rewriting and Termination. Goal: certification of termination proofs produced by various termination provers. Project started in March 2004 by Frédéric Blangui.

How to do that? CoLoR approach:

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

A D M A A A M M

CoLol

CoLoR: Coq Library on Rewriting and Termination. Goal: certification of termination proofs produced by various termination provers. Project started in March 2004 by Frédéric Blangui.

How to do that? CoLoR approach:

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

A D M A A A M M

CoLoR: Coq Library on Rewriting and Termination. Goal: certification of termination proofs produced by various termination provers. Project started in March 2004 by Frédéric Blangui.

How to do that? CoLoR approach:

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

A D M A A A M M

- 3 >

CoLoR: Coq Library on Rewriting and Termination. Goal: certification of termination proofs produced by various termination provers. Project started in March 2004 by Frédéric Blangui.

How to do that? CoLoR approach:

- TPG: common format for termination proofs.
- Tools output proofs in TPG format.
- CoLoR: a Coq library of results on termination.
- Rainbow: a tool for translation from proofs in TPG format to Coq proofs, using results from CoLoR.

A.Koprowski, H.Zantema (TU/e)

CoLoR architecture overview

・ロト ・日下 ・ ヨト ・

A.Koprowski, H.Zantema (TU/e)

Certification of proving termination ...

SOFSEM'08 9 / 24

TU/e

technische universiteit eindhoven

CoLoR architecture overview

A.Koprowski, H.Zantema (TU/e)

Certification of proving termination ...

SOFSEM'08 9 / 24

TU/e technische universitei eindhoven

・ロト ・ 日 ト ・ ヨ ト ・

CoLoR architecture overview

A.Koprowski, H.Zantema (TU/e)

Certification of proving termination ...

SOFSEM'08 9 / 24

• In the termination competition in 2007 a new "certified" category was introduced.

• Participants:

- CIME+ A3PAT
- TPA+ CoLoR
- $T_T T_2 + CoLoR$
- TPA+ CoLoR was the winner with the score of 354.
- Every successful proof of TPA was using matrix interpretations.

SOFSEM'08

10/24
- In the termination competition in 2007 a new "certified" category was introduced.
- Participants:
 - CiME+ A3PAT
 - TPA+ CoLoR
 - $T_TT_2 + CoLoR$
- TPA+ CoLoR was the winner with the score of 354.
- Every successful proof of TPA was using matrix interpretations.

SOFSEM'08

- In the termination competition in 2007 a new "certified" category was introduced.
- Participants:
 - CIME+ A3PAT
 - TPA+ CoLoR
 - $T_TT_2 + CoLoR$
- TPA+ CoLoR was the winner with the score of 354.
- Every successful proof of TPA was using matrix interpretations.

- In the termination competition in 2007 a new "certified" category was introduced.
- Participants:
 - CIME+ A3PAT
 - TPA+ CoLoR
 - $T_TT_2 + CoLoR$
- TPA+ CoLoR was the winner with the score of 354.
- Every successful proof of TPA was using matrix interpretations.

A (1) > A (2) > A

SOFSEM'08

Outline

Background

- Termination of Term Rewriting
 - Term Rewriting
 - Termination of Term Rewriting
 - Automation of Proving Termination
- Certification of Termination
 - CoLoR project: Certification of Termination Proofs
 - Certified Competition

Formalization of Matrix Interpretations

- Matrix Interpretations Method
- Monotone algebras
- Matrices

A.Koprowski, H.Zantema (TU/e)

Matrix interpretations

3 Conclusions & Future Work

SOFSEM'08

• A popular approach is interpretation into a well-founded monotone algebra.

- Domain: \mathbb{N} , $f(x_1, \ldots, x_n)$ interpreted as polynomial $\mathbb{N}[x_1, \ldots, x_n]$ \implies polynomial interpretations (Lankford '79)
- Domain: \mathbb{N}^d , $f(\vec{x_1}, \dots, \vec{x_n}) = A_1 \vec{x_1} + \dots + A_n \vec{x_n} + \vec{b}$, with $A_i \in \mathbb{N}^{d \times d}$, $\vec{b} \in \mathbb{N}^d$

 \Rightarrow matrix interpretations (Endrullis, Waldmann, Zantema '06)

- A popular approach is interpretation into a well-founded monotone algebra.
- Domain: \mathbb{N} , $f(x_1, ..., x_n)$ interpreted as polynomial $\mathbb{N}[x_1, ..., x_n]$ \implies polynomial interpretations (Lankford '79)
- Domain: \mathbb{N}^d , $f(\vec{x_1}, \dots, \vec{x_n}) = A_1 \vec{x_1} + \dots + A_n \vec{x_n} + \vec{b}$, with $A_i \in \mathbb{N}^{d \times d}$, $\vec{b} \in \mathbb{N}^d$

 \Rightarrow matrix interpretations (Endrullis, Waldmann, Zantema '06)

- A popular approach is interpretation into a well-founded monotone algebra.
- Domain: \mathbb{N} , $f(x_1, ..., x_n)$ interpreted as polynomial $\mathbb{N}[x_1, ..., x_n]$ \implies polynomial interpretations (Lankford '79)
- Domain: \mathbb{N}^d , $f(\vec{x_1}, \dots, \vec{x_n}) = A_1 \vec{x_1} + \dots + A_n \vec{x_n} + \vec{b}$, with $A_i \in \mathbb{N}^{d \times d}$, $\vec{b} \in \mathbb{N}^d$

 \implies matrix interpretations (Endrullis, Waldmann, Zantema '06)

12/24

SOFSEM'08

Example

 $a(a(x)) \rightarrow a(b(a(x), c))$ $a(x) = (1, 1) \times \pm (0)$

 $b(x,y) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} y$ $c = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$

 $\begin{bmatrix} b(a(x),c) \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x$ $\begin{bmatrix} a(b(a(x),c)) \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\begin{bmatrix} a(a(x)) \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\begin{pmatrix} u_{1} \\ \cdots \\ u_{d} \end{pmatrix} \gtrsim \begin{pmatrix} v_{1} \\ v_{d} \end{pmatrix} \text{ iff } \forall i, u_{i} \geq_{\mathbb{N}} v_{i} \\ \begin{pmatrix} u_{1} \\ \cdots \\ u_{d} \end{pmatrix} > \begin{pmatrix} v_{1} \\ v_{d} \end{pmatrix} \text{ iff } \begin{pmatrix} u_{1} \\ \cdots \\ u_{d} \end{pmatrix} \gtrsim \begin{pmatrix} v_{1} \\ v_{d} \end{pmatrix} \wedge u_{1} >_{\mathbb{N}} v_{1}$$

A.Koprowski, H.Zantema (TU/e)

Certification of proving termination ...

Example

$$a(a(x)) \rightarrow a(b(a(x), c))$$

$$a(x) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$b(x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} y$$

$$c = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

 $\begin{bmatrix} b(a(x),c) \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x$ $\begin{bmatrix} a(b(a(x),c)) \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $\begin{bmatrix} a(a(x)) \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$\begin{pmatrix} u_{1} \\ \cdots \\ u_{d} \end{pmatrix} \gtrsim \begin{pmatrix} v_{1} \\ \cdots \\ v_{d} \end{pmatrix} \text{ iff } \forall i, u_{i} \geq_{\mathbb{N}} v_{i} \\ \begin{pmatrix} u_{1} \\ \cdots \\ u_{d} \end{pmatrix} > \begin{pmatrix} v_{1} \\ \cdots \\ v_{d} \end{pmatrix} \text{ iff } \begin{pmatrix} u_{1} \\ \cdots \\ u_{d} \end{pmatrix} \gtrsim \begin{pmatrix} v_{1} \\ v_{d} \end{pmatrix} \wedge u_{1} >_{\mathbb{N}} v_{1}$$

A.Koprowski, H.Zantema (TU/e)

Certification of proving termination ...

Example

$$a(a(x)) \to a(b(a(x), c))$$

$$a(x) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$b(x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} y$$

$$c = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} b(a(x),c) \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x$$
$$\begin{bmatrix} a(b(a(x),c)) \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{bmatrix} a(a(x)) \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} u_{1} \\ u_{d} \\ u_{d} \end{pmatrix} \gtrsim \begin{pmatrix} v_{1} \\ v_{d} \end{pmatrix} \text{ iff } \forall i, u_{i} \geq_{\mathbb{N}} v_{i} \\ \begin{pmatrix} u_{1} \\ u_{d} \end{pmatrix} > \begin{pmatrix} v_{1} \\ v_{d} \end{pmatrix} \text{ iff } \begin{pmatrix} u_{1} \\ u_{d} \end{pmatrix} \gtrsim \begin{pmatrix} v_{1} \\ v_{d} \end{pmatrix} \wedge u_{1} >_{\mathbb{N}} v_{i}$$

A.Koprowski, H.Zantema (TU/e)

Example

$$a(a(x)) \to a(b(a(x), c))$$

$$a(x) = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$b(x, y) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} y$$

$$c = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\begin{bmatrix} b(a(x),c) \end{bmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x$$
$$\begin{bmatrix} a(b(a(x),c)) \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} x + \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
$$\begin{bmatrix} (u_1) \\ u_d \end{pmatrix} \ge \begin{pmatrix} v_1 \\ v_d \end{pmatrix} \text{ iff } \forall i, u_i \ge_{\mathbb{N}} v_i$$
$$\begin{pmatrix} u_1 \\ u_d \end{pmatrix} \ge \begin{pmatrix} v_1 \\ v_d \end{pmatrix} \text{ iff } \begin{pmatrix} u_1 \\ u_d \end{pmatrix} \gtrsim \begin{pmatrix} v_1 \\ v_d \end{pmatrix} \wedge u_1 >_{\mathbb{N}} v_1$$

A.Koprowski, H.Zantema (TU/e)

Outline

Background

- Termination of Term Rewriting
 - Term Rewriting
 - Termination of Term Rewriting
 - Automation of Proving Termination
- Certification of Termination
 - CoLoR project: Certification of Termination Proofs
 - Certified Competition

Formalization of Matrix Interpretations

- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations

Definition (An extended weakly monotone Σ -algebra)

An extended weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that:

- > is well-founded;
- > $\cdot \gtrsim \subseteq$ >;

• for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Theorem

Let $\mathcal{R}, \mathcal{R}'$ be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

[ℓ, α] ≥ [r, α] for every rule ℓ → r in R, for all α : X → A and
 [ℓ, α] > [r, α] for every rule ℓ → r in R' and for all α : X → A.
 Then SN(R) implies SN(R ∪ R').

イロン イ団と イヨン 一

Definition (An extended weakly monotone Σ -algebra)

An extended weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations $>, \gtrsim$ on A such that:

- > is well-founded;
- > $\cdot \gtrsim \subseteq$ >;

• for every $f \in \Sigma$ the operation [f] is monotone with respect to >.

Theorem

Let $\mathcal{R}, \mathcal{R}'$ be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

• $[\ell, \alpha] \gtrsim [r, \alpha]$ for every rule $\ell \to r$ in \mathcal{R} , for all $\alpha : \mathcal{X} \to A$ and

• $[\ell, \alpha] > [r, \alpha]$ for every rule $\ell \to r$ in \mathcal{R}' and for all $\alpha : \mathcal{X} \to A$.

Then $SN(\mathcal{R})$ implies $SN(\mathcal{R} \cup \mathcal{R}')$.

• Monotone algebras are formalized as a functor.

- We additionally require >_T and ≳_T to be decidable. (where s >_T t ≡ ∀α : X → A, [s, α] > [t, α])
- \bullet More precisely the requirement is to provide a relation $\gg,$ such that
 - $\gg \subseteq >_{\mathcal{T}}$ and
 - $\bullet \gg$ is decidable
 - similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SOFSEM'08

Formalization of monotone algebras

- Monotone algebras are formalized as a functor.
- We additionally require >_T and ≳_T to be decidable. (where s >_T t ≡ ∀α : X → A, [s, α] > [t, α])
- More precisely the requirement is to provide a relation ≫, such that
 - $\gg \subseteq >_T$ and
 - $\bullet \gg$ is decidable
 - similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

イロト イ団ト イヨト イヨト

SOFSEM'08

- Monotone algebras are formalized as a functor.
- We additionally require >_T and ≳_T to be decidable. (where s >_T t ≡ ∀α : X → A, [s, α] > [t, α])
- $\bullet\,$ More precisely the requirement is to provide a relation $\gg,$ such that
 - $\bullet \ \gg \, \subseteq \, >_{\mathcal{T}} \text{ and }$
 - $\bullet \gg$ is decidable
 - similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SOFSEM'08

- Monotone algebras are formalized as a functor.
- We additionally require >_T and ≳_T to be decidable. (where s >_T t ≡ ∀α : X → A, [s, α] > [t, α])
- $\bullet\,$ More precisely the requirement is to provide a relation $\gg,$ such that
 - $\bullet \ \gg \, \subseteq \, >_{\mathcal{T}} \text{ and }$
 - $\bullet \gg$ is decidable
 - $\bullet\,$ similarly for $\gtrsim.$
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

SOFSEM'08

Outline

Background

- Termination of Term Rewriting
 - Term Rewriting
 - Termination of Term Rewriting
 - Automation of Proving Termination
- Certification of Termination
 - CoLoR project: Certification of Termination Proofs
 - Certified Competition

Formalization of Matrix Interpretations

- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations

• • • • • • • • • • • •

• Matrices over arbitrary semi-ring of coefficients.

• a number of basic operations over matrices such as:

 $[\cdot], M_{i,j}, M+N, M*N, M^T, \ldots$

• and a number of basic properties such as:

Certification of proving termination ...

- Matrices over arbitrary semi-ring of coefficients.
- a number of basic operations over matrices such as:

$[\cdot], \quad M_{i,j}, \quad M+N, \quad M*N, \quad M^T, \ \ldots$

• and a number of basic properties such as:

•
$$M+N=N+M$$
,

$$\bullet \ M * (N * P) = (M * N) * P$$

0....

A.Koprowski, H.Zantema (TU/e)

< 同 > < ∃ >

SOFSEM'08

- Matrices over arbitrary semi-ring of coefficients.
- a number of basic operations over matrices such as:

$$[\cdot], \quad M_{i,j}, \quad M+N, \quad M*N, \quad M^T, \ \ldots$$

• and a number of basic properties such as:

•
$$M+N=N+M$$
,

•
$$M * (N * P) = (M * N) * P$$

• monotonicity of *

A.Koprowski, H.Zantema (TU/e)

Certification of proving termination ...

SOFSEM'08

Outline

Background

- Termination of Term Rewriting
 - Term Rewriting
 - Termination of Term Rewriting
 - Automation of Proving Termination
- Certification of Termination
 - CoLoR project: Certification of Termination Proofs
 - Certified Competition

Formalization of Matrix Interpretations

- Matrix Interpretations Method
- Monotone algebras
- Matrices
- Matrix interpretations

• $A = \mathbb{Z}$,

- $\bullet \ >=>_{\mathbb{Z}}, \gtrsim =\geq_{\mathbb{Z}},$
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

- $A = \mathbb{Z}$,
- \bullet > = >_{\mathbb{Z}}, \gtrsim = $\geq_{\mathbb{Z}}$,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

SOFSEM'08

- $A = \mathbb{Z}$,
- $\bullet \ >=>_{\mathbb{Z}}, \gtrsim =\geq_{\mathbb{Z}},$
- interpretations represented by polynomials $[f(x_1, \ldots, x_n)] = P_{\mathbb{Z}}(x_1, \ldots, x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

- $A = \mathbb{Z}$,
- \bullet > = >_{\mathbb{Z}}, \gtrsim = \geq _{\mathbb{Z}},
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

A (1) > A (2) > A

• fix a dimension *d*,

- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d)$ iff $\forall i, u_i \geq_{\mathbb{N}} v_i$,
- $(u_1,...,u_d) > (v_1,...,v_d)$ iff $(u_1,...,u_d) \gtrsim (v_1,...,v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- >_T and ≳_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \geq .

- A 🖻 🕨

SOFSEM'08

fix a dimension d,

- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d)$ iff $\forall i, u_i \geq_{\mathbb{N}} v_i$,
- $(u_1, ..., u_d) > (v_1, ..., v_d)$ iff $(u_1, ..., u_d) \gtrsim (v_1, ..., v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- >_T and ≳_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \geq .

.

SOFSEM'08

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d)$ iff $\forall i, u_i \geq_{\mathbb{N}} v_i$,
- $(u_1, ..., u_d) > (v_1, ..., v_d)$ iff $(u_1, ..., u_d) \gtrsim (v_1, ..., v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- >_T and ≳_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \geq .

.

SOFSEM'08

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d)$ iff $\forall i, u_i \geq_{\mathbb{N}} v_i$,
- $(u_1,\ldots,u_d) > (v_1,\ldots,v_d)$ iff $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- >_T and ≳_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \geq .

(4) (5) (4) (5)

SOFSEM'08

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d)$ iff $\forall i, u_i \geq_{\mathbb{N}} v_i$,
- $(u_1,\ldots,u_d) > (v_1,\ldots,v_d)$ iff $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- >_T and ≳_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \geq .

SOFSEM'08

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d)$ iff $\forall i, u_i \geq_{\mathbb{N}} v_i$,
- $(u_1,\ldots,u_d) > (v_1,\ldots,v_d)$ iff $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- >_T and ≳_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \geq .

∃ >

SOFSEM'08

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d)$ iff $\forall i, u_i \geq_{\mathbb{N}} v_i$,
- $(u_1,\ldots,u_d) > (v_1,\ldots,v_d)$ iff $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d) \land u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- >_T and ≳_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.
- Domain fixed to \mathbb{N} with natural orders > and \ge .

SOFSEM'08

We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:

- extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup \{-\infty\}$).
- Formalization of further termination techniques.
- Collaboration with termination tools' authors to extend applicability of CoLoR.

We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:

- extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup \{-\infty\}$).
- Formalization of further termination techniques.
- Collaboration with termination tools' authors to extend applicability of CoLoR.

< (□) < 三 > (□)

SOFSEM'08
We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:

- extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup \{-\infty\}$).
- Formalization of further termination techniques.
- Collaboration with termination tools' authors to extend applicability of CoLoR.

SOFSEM'08

22/24

We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:

- extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup \{-\infty\}$).
- Formalization of further termination techniques.
- Collaboration with termination tools' authors to extend applicability of CoLoR.

We presented:

- formalization of the matrix interpretations method,
- that allowed TPA+ CoLoR to win the certified competition in 2007.

Future work:

- extension to arctic matrices (max/plus semi-ring over $\mathbb{N} \cup \{-\infty\}$).
- Formalization of further termination techniques.
- Collaboration with termination tools' authors to extend applicability of CoLoR.

ru/e technische universiteit eindhoven

< 🗇 🕨 < 🖃 🕨

http://color.loria.fr

Thank you for your attention.

A.Koprowski, H.Zantema (TU/e)

Certification of proving termination ...

SOFSEM'08 23 / 24

TU

.hnische liversiteit ndhoven If you are bored in the evening (or like puzzles) are the following systems terminating:

Example			
	$egin{array}{llllllllllllllllllllllllllllllllllll$		
Example			
	aab ightarrow babaa $bb ightarrow$		
		TU /	e technisch universite eindhover
A Koprowski H Zantema (TU/e)	Certification of proving termination	SOESEM'08	24/24

If you are bored in the evening (or like puzzles) are the following systems terminating:

Example		
	aa ightarrow bc	
	bb ightarrow ac	
	cc ightarrow ab	

Example

A.Koprowski, H.Zantema (TU/e)

Certification of proving termination ...

SOFSEM'08

24/24