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Introduction.

We study the complexity of Minimum Weight Problem and
Subgroup Distance Problem for various metrics over

permutation groups.
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Road-map of the talk.

Metrics on permutation Groups

Minimum Weight Problem and Subgroup Distance
Problem

Elementary hardness result for MWP and SDP and a
relation with binary linear codes.

MWP reduces to SDP for solvable groups
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Road-map Contd...

A 2O(n) algorithm for MWP with respect to l∞ metric

Other results:

Schrier-Sims Algorithm and Minimum Weight
Problem with respect to hamming metric

Finding fixed point free permutations in 2O(n) time

Limits of hardness of approximation and a Co-AM
protocol for SDP
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Metrics on permutation group

A function d : Sn × Sn 7→ R is a metric on the permutation
group Sn if for all π, τ, ψ ∈ Sn d(π, τ) = d(τ, π) ≥ 0 and
d(π, τ) = 0 iff π = τ . Furthermore, the triangle inequality
holds: d(π, τ) ≤ d(π, ψ) + d(ψ, τ).
Denote d(e, τ) by ‖τ‖. e is an identity permutation in G.
Examples:

Hamming distance d(τ, π) = |{i|τ(i) 6= π(i)}|

l∞ distance d(τ, π) = max1≤i≤n|τ(i) − π(i)|.

Cayley distance d(τ, π)= minimum number of
transpositions taking τ to π
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Minimum Weight Problem

Minimum Weight Problem:
Input: (G, k),G ≤ Sn given by a generating set and k > 0

Question: Is there a τ ∈ G \ {e} with ‖τ‖ ≤ k?
Exact analogue of Shortest Vector Problem in integer lattices
[MG02].
Complexity: In general NP-hard for various metrics [CW06].
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Subgroup Distance Problem

Subgroup Distance Problem:
Input: (G, τ, k), where G ≤ Sn is given by a generating set,
τ ∈ Sn, and k > 0

Question: Is d(τ,G) ≤ k?
Exact analogue of Closest Vector Problem in integer lattices
Complexity: In general NP-hard for various metrics [BCW06].
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MWP and SDP are NP-hard

A simple reduction

Given C ⊆ F
n
2 , a binary linear code. There is an easy

way to get an abelian 2-group G ≤ S2n isomorphic to
additive group of C.

This implies that MWP and SDP are NP-hard for
hamming, lp metric, Cayley metric using hardness results
for analogous problems in codes[ABSS97, DMS99].
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MWP Turing reduces to SDP for solvable groups

A Turing reduction from MWP to SDP for solvable groups

Our reduction uses ideas from [GMSS99] which gives
analogous reduction in lattice setting.

Let G ≤ Sn is solvable group. Goal is to check whether a
“shortest” permutation in G has norm less than m.

Obvious approach doesn’t work! The idea is to make
different queries of the form (H, τ) to SDP routine for
suitable choice of H ≤ G and τ /∈ H.
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MWP Turing reduces to SDP for solvable groups

Consider the composition series of
G = Gk �Gk−1 � . . .�G1 �G0 = {e}, k ≤ n such that
Gi/Gi−1 has prime order pi. Let τi ∈ Gi \Gi−1.

It is easy to see that τi’s form a generating set of G.

Query the oracle of SDP for instances (Gi−1, τ
−r
i ,m) for

1 ≤ i ≤ k, 1 ≤ r < pi. Output “YES” if any of the queries
outputs “YES” otherwise output “NO”.

SOFSEM’08 – p. 10



2O(n) algorithm for MWP ( l∞ metric )

Given G ≤ Sn, Goal is to find τ ∈ G \ {e} with minimum
norm wrt l∞ metric

Brute force algorithm may take O(n!) time

Our algorithm uses the framework developed in [AKS01],
particularly a presentation of AKS algorithm in O.
Regev’s lecture notes

The algorithm is randomized and uses 2O(n) time and
succeeds with probability exponentially close to one.
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2O(n) algorithm for MWP ( l∞ metric ) Contd..

Bn(τ, r, d) = {π ∈ Sn|l∞(π, τ) ≤ r} be the ball of radius r
centred at τ . Volume of a ball is number of permutations
inside it.

A volume bound

Lemma 1 For 1 ≤ r ≤ n− 1 we have,
rn/e2n ≤ V ol(Bn(e, r, l∞)) ≤ (2r + 1)n.
Proof of the Lemma is based on simple combinatorics.
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2O(n) algorithm for MWP ( l∞ metric ) Contd..

Randomly sampling permutations from l∞ metric balls

Pick a function τ : [n] 7→ [n] as follows
For each i ∈ [n], let Li = {j|1 ≤ j ≤ n, i− r ≤ j ≤ i+ r}

and pick τ(i) uniformly at random from Li.

Of course τ defined this way need not be a permutation

Lemma 1 guarantees that it is so with probability atleast
2−cn !

Lemma 2 There exists a randomized procedure which runs in
time 2O(n) and produces an almost uniform random sample
from Bn(e, r, l∞).
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2O(n) algorithm for MWP ( l∞ metric ) Contd..

The sieving procedure (Similar to AKS)

Following is a crucial Lemma used in the algorithm
Lemma 3 [Sieving Procedure] Let r > 0 and
{τ1, τ2, τ3, . . . , τN} ⊆ Bn(e, r) be a subset of
permutations. Then in NO(1) time we can find S ⊂ [N ] of
size atmost 2c1n for a constant c1 such that for each
i ∈ [N ] there is a j ∈ S with l∞(τi, τj) ≤ r/2.

The procedure uses simple greedy strategy. Proof of
correctness is based on the volume bound in Lemma 1
and a packing argument.
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2O(n) algorithm for MWP ( l∞ metric ) Contd..

Main Algorithm

we can assume that we know a norm of a “shortest”
permutation τ . Let t = ‖τ‖.

Let N = 2cn. For 1 ≤ i ≤ N , pick ρi independently and
uniformly at random from G, and pick τi almost uniformly
at random from Bn(e, 2t).

Let ψi = τiρi, 1 ≤ i ≤ N . Let
Z = {(ψ1, τ1), (ψ2, τ2), . . . , (ψN , τN )}, and let
R = maxi‖ψi‖. Let T = [N ].
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2O(n) algorithm for MWP ( l∞ metric ) Contd..

While R > 6 ∗ t do the following steps:

Apply the “sieving procedure” to {ψi | i ∈ T}. Let S ⊆ T

be the output of sieving procedure.

for all i ∈ S remove tuple (ψi, τi) from Z.

for all i /∈ S replace tuple (ψi, τi) ∈ Z by (ψiψ
−1
j τj, τi),

where j ∈ S and l∞(ψj, ψi) ≤ R/2.

set R = R/2 + 2t and T = T \ S.

For all (ϕi, τi), (ϕj, τj) ∈ Z, let ϕi,j = (τ−1
j ϕj)(τ

−1
i ϕi)

−1

(which is in G). Output a ϕi,j with smallest nonzero norm.
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2O(n) algorithm for MWP ( l∞ metric ) Contd..

Proof of correctness

Invariant maintained through out the algorithm : For all
i ∈ T we have (ϕi, τi) ∈ Z, τ−1

i ϕi ∈ G and ‖ϕi‖ ≤ R.

From Lemma 3 if follows that only “few” elements are
sieved out in the while loop

As a result we have 2O(n) tuples (ϕi, τi) such that
τ−1
i ϕi ∈ G and ‖τ−1

i ϕi‖ ≤ 8t
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2O(n) algorithm for MWP ( l∞ metric ) Contd..

Proof of correctness

We have 2O(n) permutations in G with small norms, so
we already have a good approximation!
Are we through?

Not really ! all of them can be identity permutations !

We can argue that we get not even the approximation to
“shortest permutation” but can find it exactly
At this point our proof crucially differs from that of [Re]
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Other Results

A 2O(n) algorithm for MWP (hamming metric) using
Schrier-Sims algorithm

A 2O(n) algorithm for Finding fixed point free permutation

A Co-AM protocol for SDP
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Future Work

Using ideas similar to 2O(n) algorithm for MWP (l∞
metric) we could get a 2O(n) algorithm for solving gap
version of SDP for gap 1 + ǫ.

In case of integer lattices for certain problems a
worst-case to average case reduction in known .
Interesting direction of further research would be to
explore the possibility of worst-case to average case
reduction in permutation group setting. Interestingly AKS
algorithm uses ideas from Ajtai’s work on worst-case to
average case reduction.
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THANK YOU!!
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