Algorithmic Problems for Metrics on Permutation Groups

V. Arvind, Pushkar S. Joglekar

The Institute of Mathematical Sciences
CIT Campus, Taramani, Chennai 600 113, India \{arvind, pushkar\}@imsc.res.in

Current Trends in Theory and Practice of Computer Science SOFSEM 2008
January 19-25, High Tatras, Slovakia 2008

Introduction.

We study the complexity of Minimum Weight Problem and Subgroup Distance Problem for various metrics over permutation groups.

Road-map of the talk.

- Metrics on permutation Groups
- Minimum Weight Problem and Subgroup Distance Problem
- Elementary hardness result for MWP and SDP and a relation with binary linear codes.
- MWP reduces to SDP for solvable groups

Road-map Contd...

- A $2^{O(n)}$ algorithm for MWP with respect to l_{∞} metric
- Other results:
- Schrier-Sims Algorithm and Minimum Weight Problem with respect to hamming metric
- Finding fixed point free permutations in $2^{O(n)}$ time
- Limits of hardness of approximation and a Co-AM protocol for SDP

Metrics on permutation group

A function $d: S_{n} \times S_{n} \mapsto \mathbb{R}$ is a metric on the permutation group S_{n} if for all $\pi, \tau, \psi \in S_{n} d(\pi, \tau)=d(\tau, \pi) \geq 0$ and $d(\pi, \tau)=0$ iff $\pi=\tau$. Furthermore, the triangle inequality holds: $d(\pi, \tau) \leq d(\pi, \psi)+d(\psi, \tau)$.
Denote $d(e, \tau)$ by $\|\tau\| . e$ is an identity permutation in G.
Examples:

- Hamming distance $d(\tau, \pi)=|\{i \mid \tau(i) \neq \pi(i)\}|$
- l_{∞} distance $d(\tau, \pi)=\max _{1 \leq i \leq n}|\tau(i)-\pi(i)|$.
- Cayley distance $d(\tau, \pi)=$ minimum number of transpositions taking τ to π

Minimum Weight Problem

Minimum Weight Problem:

Input: $(G, k), G \leq S_{n}$ given by a generating set and $k>0$
Question: Is there a $\tau \in G \backslash\{e\}$ with $\|\tau\| \leq k$?
Exact analogue of Shortest Vector Problem in integer lattices
[MG02].
Complexity: In general NP-hard for various metrics [CW06].

Subgroup Distance Problem

Subgroup Distance Problem:

Input: (G, τ, k), where $G \leq S_{n}$ is given by a generating set,
$\tau \in S_{n}$, and $k>0$
Question: Is $d(\tau, G) \leq k$?
Exact analogue of Closest Vector Problem in integer lattices
Complexity: In general NP-hard for various metrics [BCW06].

MWP and SDP are NP-hard

A simple reduction

- Given $C \subseteq \mathbb{F}_{2}^{n}$, a binary linear code. There is an easy way to get an abelian 2-group $G \leq S_{2 n}$ isomorphic to additive group of C.
- This implies that MWP and SDP are NP-hard for hamming, l_{p} metric, Cayley metric using hardness results for analogous problems in codes[ABSS97, DMS99].

MWP Turing reduces to SDP for solvable groups

A Turing reduction from MWP to SDP for solvable groups

- Our reduction uses ideas from [GMSS99] which gives analogous reduction in lattice setting.
- Let $G \leq S_{n}$ is solvable group. Goal is to check whether a "shortest" permutation in G has norm less than m.
- Obvious approach doesn't work! The idea is to make different queries of the form (H, τ) to SDP routine for suitable choice of $H \leq G$ and $\tau \notin H$.

MWP Turing reduces to SDP for solvable groups

- Consider the composition series of
$G=G_{k} \triangleright G_{k-1} \triangleright \ldots \triangleright G_{1} \triangleright G_{0}=\{e\}, k \leq n$ such that G_{i} / G_{i-1} has prime order p_{i}. Let $\tau_{i} \in G_{i} \backslash G_{i-1}$.
- It is easy to see that τ_{i} 's form a generating set of G.
- Query the oracle of SDP for instances $\left(G_{i-1}, \tau_{i}^{-r}, m\right)$ for $1 \leq i \leq k, 1 \leq r<p_{i}$. Output "YES" if any of the queries outputs "YES" otherwise output "NO".

$2^{O(n)}$ algorithm for MWP (l_{∞} metric)

- Given $G \leq S_{n}$, Goal is to find $\tau \in G \backslash\{e\}$ with minimum norm wrt l_{∞} metric
- Brute force algorithm may take $O(n!)$ time
- Our algorithm uses the framework developed in [AKS01], particularly a presentation of AKS algorithm in O. Regev's lecture notes
- The algorithm is randomized and uses $2^{O(n)}$ time and succeeds with probability exponentially close to one.

$2^{O(n)}$ algorithm for MWP (l_{∞} metric) Contd..

- $B_{n}(\tau, r, d)=\left\{\pi \in S_{n} \mid l_{\infty}(\pi, \tau) \leq r\right\}$ be the ball of radius r centred at τ. Volume of a ball is number of permutations inside it.
- A volume bound

Lemma 1 For $1 \leq r \leq n-1$ we have,
$r^{n} / e^{2 n} \leq \operatorname{Vol}\left(B_{n}\left(e, r, l_{\infty}\right)\right) \leq(2 r+1)^{n}$.
Proof of the Lemma is based on simple combinatorics.

$2^{O(n)}$ algorithm for MWP (l_{∞} metric) Contd..

Randomly sampling permutations from l_{∞} metric balls

- Pick a function $\tau:[n] \mapsto[n]$ as follows

For each $i \in[n]$, let $L_{i}=\{j \mid 1 \leq j \leq n, i-r \leq j \leq i+r\}$ and pick $\tau(i)$ uniformly at random from L_{i}.

- Of course τ defined this way need not be a permutation
- Lemma 1 guarantees that it is so with probability atleast $2^{-c n}$!

Lemma 2 There exists a randomized procedure which runs in time $2^{O(n)}$ and produces an almost uniform random sample from $B_{n}\left(e, r, l_{\infty}\right)$.

$2^{O(n)}$ algorithm for MWP (l_{∞} metric) Contd..

The sieving procedure (Similar to AKS)

- Following is a crucial Lemma used in the algorithm Lemma 3 [Sieving Procedure] Let $r>0$ and $\left\{\tau_{1}, \tau_{2}, \tau_{3}, \ldots, \tau_{N}\right\} \subseteq B_{n}(e, r)$ be a subset of permutations. Then in $N^{O(1)}$ time we can find $S \subset[N]$ of size atmost $2^{c_{1} n}$ for a constant c_{1} such that for each $i \in[N]$ there is a $j \in S$ with $l_{\infty}\left(\tau_{i}, \tau_{j}\right) \leq r / 2$.
- The procedure uses simple greedy strategy. Proof of correctness is based on the volume bound in Lemma 1 and a packing argument.

$2^{O(n)}$ algorithm for MWP (l_{∞} metric) Contd..

Main Algorithm

- we can assume that we know a norm of a "shortest" permutation τ. Let $t=\|\tau\|$.
- Let $N=2^{c n}$. For $1 \leq i \leq N$, pick ρ_{i} independently and uniformly at random from G, and pick τ_{i} almost uniformly at random from $B_{n}(e, 2 t)$.
- Let $\psi_{i}=\tau_{i} \rho_{i}, 1 \leq i \leq N$. Let
$Z=\left\{\left(\psi_{1}, \tau_{1}\right),\left(\psi_{2}, \tau_{2}\right), \ldots,\left(\psi_{N}, \tau_{N}\right)\right\}$, and let $R=\max _{i}\left\|\psi_{i}\right\|$. Let $T=[N]$.

$2^{O(n)}$ algorithm for MWP (l_{∞} metric) Contd..

While $R>6 * t$ do the following steps:

- Apply the "sieving procedure" to $\left\{\psi_{i} \mid i \in T\right\}$. Let $S \subseteq T$ be the output of sieving procedure.
- for all $i \in S$ remove tuple $\left(\psi_{i}, \tau_{i}\right)$ from Z.
- for all $i \notin S$ replace tuple $\left(\psi_{i}, \tau_{i}\right) \in Z$ by $\left(\psi_{i} \psi_{j}^{-1} \tau_{j}, \tau_{i}\right)$, where $j \in S$ and $l_{\infty}\left(\psi_{j}, \psi_{i}\right) \leq R / 2$.
- set $R=R / 2+2 t$ and $T=T \backslash S$.
- For all $\left(\varphi_{i}, \tau_{i}\right),\left(\varphi_{j}, \tau_{j}\right) \in Z$, let $\varphi_{i, j}=\left(\tau_{j}^{-1} \varphi_{j}\right)\left(\tau_{i}^{-1} \varphi_{i}\right)^{-1}$ (which is in G). Output a $\varphi_{i, j}$ with smallest nonzero norm.

$2^{O(n)}$ algorithm for MWP (l_{∞} metric) Contd..

Proof of correctness

- Invariant maintained through out the algorithm : For all $i \in T$ we have $\left(\varphi_{i}, \tau_{i}\right) \in Z, \tau_{i}^{-1} \varphi_{i} \in G$ and $\left\|\varphi_{i}\right\| \leq R$.
- From Lemma 3 if follows that only "few" elements are sieved out in the while loop
- As a result we have $2^{O(n)}$ tuples $\left(\varphi_{i}, \tau_{i}\right)$ such that $\tau_{i}^{-1} \varphi_{i} \in G$ and $\left\|\tau_{i}^{-1} \varphi_{i}\right\| \leq 8 t$

$2^{O(n)}$ algorithm for MWP (l_{∞} metric) Contd..

Proof of correctness

- We have $2^{O(n)}$ permutations in G with small norms, so we already have a good approximation! Are we through?
- Not really ! all of them can be identity permutations !
- We can argue that we get not even the approximation to "shortest permutation" but can find it exactly At this point our proof crucially differs from that of [Re]

Other Results

- $\mathrm{A} 2^{O(n)}$ algorithm for MWP (hamming metric) using Schrier-Sims algorithm
- A $2^{O(n)}$ algorithm for Finding fixed point free permutation
- A Co-AM protocol for SDP

Future Work

- Using ideas similar to $2^{O(n)}$ algorithm for MWP (l_{∞} metric) we could get a $2^{O(n)}$ algorithm for solving gap version of SDP for gap $1+\epsilon$.
- In case of integer lattices for certain problems a worst-case to average case reduction in known . Interesting direction of further research would be to explore the possibility of worst-case to average case reduction in permutation group setting. Interestingly AKS algorithm uses ideas from Ajtai's work on worst-case to average case reduction.

THANK YOU!!

