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Geometric graphs

A graph G = (V , E) with a fixed straight line drawing δ in the
plane.



Crossing edges

Two edges that share a point that is not an endpoint of both.



Untangling a geometric graph

Move vertices to new positions to get rid of all crossing edges.
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Fixed vertices

Vertices that are not moved during the untangling process are
called fixed.
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Restriction to planar graphs

Clearly, not every geometric graph can be untangled.

So, we assume that G is planar, that is, there exists a drawing
without crossing edges.



Statement of the problem

I Given a straight line drawing δ of a planar graph G we
define

fix(G, δ)

as the maximum number of vertices that can be kept fixed
when untangling δ.

I Given a planar graph G we define

fix(G)

as the minimum of fix(G, δ) over all possible straight line
drawings δ of G.



Statement of the problem

I Goal
Give upper and lower bounds on fix(G) in terms of the
number n of vertices of G.

I Intuitively
What is the number of vertices we can always keep fixed
no matter what planar graph on n vertices we are given
and how “bad” the drawing of it is?



Previously known lower bounds

I Paths and cycles (Pach and Tardos 2002):

Ω(
√

n)

I Trees (Goaoc et al. 2007):

Ω(
√

n)

I General planar graphs (Goaoc et al. 2007, Verbitsky 2007):
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Previously known upper bounds

I Cycles (Pach and Tardos 2002):

O((n log n)2/3)

I General planar graphs (Goaoc et al. 2007)

O(
√

n)



Making our live easy

For the lower bound construction we will assume that the given
planar graph G is triangulated, that is, any additional edge will
make G non-planar.



The given drawing
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Guiding our construction
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A path with no chords on one side.



Back to the given drawing
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Untangling the path
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Untangling the chords

8

910

11
1213

2

3

1

6

5
4

7



Drawings with star-shaped boundary

(Hong and Nagamochi 2006)



The resulting untangled drawing
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For a path with l vertices we can keep Ω(
√

l) vertices fixed.



Finding suitable long paths in the given graph

We have
I a vertex u of high degree,

u

or
I a large diameter (and then using Schnyder Woods).



Our results

Lower bounds:
I General planar graphs:

Ω(

√
log n

log log n
)

I Outerplanar graphs:
Ω(
√

n)

Upper bound:
I Outerplanar graphs:

O(
√

n)



Concluding remarks

Two main results:
I Asymptotically tight lower and upper bounds for the class

of outerplanar graphs.
I The path construction outlined in this talk is a main building

block in the proof of the recently improved lower bound for
general planar graphs (Bose et al. 2007), which yields

Ω( 4
√

n).
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