The Quantum Complexity of Group Testing

Sebastian Dörn¹ Thomas Thierauf²

¹ Inst. für Theoretische Informatik, Universität Ulm

² Fak. Elektronik und Informatik, HTW Aalen

21. January 2008

日とくほとくほど

Our Work

- Prove quantum complexity lower and upper bounds for algebraic properties.
- Consider decision problems whether a given structure is in fact a group.

 Give quantum complexity bounds for testing distributivity and commutativity.

크

Input: Operation table for set S of size $n \times n$.

- Groupoid: finite set S with a binary operation o.
- Semigroup: associative groupoid.
- Monoid: semigroup with an identity element *e*.
- Quasigroup: groupoid where all equations $a \circ x = b$ and $x \circ a = b$ have unique solutions.
- Group: associative quasigroup.

Our Main Results

(日)

臣

Quantum Algorithms

Our Quantum Algorithms

臣

Classical vs. Quantum Query Model

Classical Query Model.

Pay for access black box:

 Compute Boolean func. on input by minimizing number of queries.

Quantum Query Model.

- Pay for access black box.
- Queries in superposition.
- Quantum parallelism.

$$\frac{1}{\sqrt{N}}\sum_{i=1}^{N}|i,0\rangle \xrightarrow{O_{\mathbf{X}}} \frac{1}{\sqrt{N}}\sum_{i=1}^{N}|i,\mathbf{x}_{i}\rangle$$

Quantum Query Complexity.

• Number of quantum queries to the black box.

Quantum Time Complexity.

• Number of "basic" quantum operations.

> < 3 > < 3 >

Input: Operation table of a groupoid *S*. **Question:** Decide whether *S* is a group. **Classical Algorithm:** $\tilde{O}(n^2)$, Rajagopalan & Schulman, 2000

Theorem

Whether a groupoid is a group requires $\Omega(n)$ quantum queries.

Theorem

Whether a groupoid is a group can be decided with $O(n \log n)$ expected quantum queries.

3

Group Testing

Input: Operation table of a groupoid *S*. **Question:** Decide whether *S* is a group.

Theorem

Whether a groupoid is a group can be decided by a quantum algorithm within $O(n^{\frac{13}{12}} \log^c n)$ expected steps, for constant *c*.

Proof.

Definition

Let (S, \circ) be a groupoid represented by its operation table *T*. A row of *T* is called cancellative, if it is a permutation of *S*.

Lemma

Let \circ be cancellative in *r* rows. If \circ is nonassociative, then it has at least *r*/4 nonassociative triples.

Group Testing

- Choose $A \subset S$ (size *r*) and check if T(A, *) is cancellative.
- **2** If there is noncancellative row \Rightarrow **No Group**.
- Solution Choose $a, b, c \in S$ and check if triple is associative.
- Using quantum amplitude amplification.
- If there is nonassociative triple \Rightarrow **No Group**.
- Check if semigroup is a group.

Quantum Time Complexity:

$$O\left(\sqrt{r}n^{\frac{2}{3}}\log^{c}n + \sqrt{\frac{n^{3}}{r}} + n^{\frac{11}{14}}\log n\right) = O(n^{\frac{13}{12}}\log^{c}n) \text{ for } r = n^{\frac{5}{6}}$$

Group Testing

- Choose $A \subset S$ (size *r*) and check if T(A, *) is cancellative.
- **2** If there is noncancellative row \Rightarrow **No Group**.
- Solution Choose $a, b, c \in S$ and check if triple is associative.
- Using quantum amplitude amplification.
- If there is nonassociative triple \Rightarrow **No Group**.
- Check if semigroup is a group.

Quantum Time Complexity:

$$O\left(\sqrt{r}n^{\frac{2}{3}}\log^{c}n + \sqrt{\frac{n^{3}}{r}} + n^{\frac{11}{14}}\log n\right) = O(n^{\frac{13}{12}}\log^{c}n) \text{ for } r = n^{\frac{5}{6}}$$

- Present quantum algorithm to check whether a given semigroup is a group.
- Show that quasigroup is a group can be decided with $\Theta(n)$ quantum queries.
- Improve the quantum query complexity of associativity testing by a more detailed analysis.
- Present quantum complexity bounds for distributivity and commutativity problem.

(日)

臣