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A Quotation of 50 Years Ago

Alonzo Church

at the “Summer Institute of Symbolic Logic”

Cornell University, 1957:

“Given a requirement which a circuit is to satisfy, we may
suppose the requirement expressed in some suitable logistic
system which is an extension of restricted recursive
arithmetic. The synthesis problem is then to find recursion
equivalences representing a circuit that satisfies the given
requirement (or alternatively, to determine that there is no
such circuit).”
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Alonzo Church (1903-1995)
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Game-Theoretic View

Q = 11010 . . .

output
P = 01101 . . .

input

For t = 0, 1, 2, . . .: Input player (1) supplies bit P(t),
output player (2) responds by bit Q(t)

Bitstreams correspond to subsets of N.

Use variables X, Y for subsets of N.

Requirement ϕ(X, Y) is considered as winning condition in
an infinite two-person game.

Play (P(0)
Q(0)) (P(1)

Q(1)) (P(2)
Q(2)) . . . is won by 2 if (N, . . .) |= ϕ(P, Q)
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Example

ϕ(X, Y):

∀t (X(t) → Y(t))

¬∃t(¬Y(t) ∧ ¬Y(t′))

(∃ωt ¬X(t) → ∃ωt ¬Y(t))

Solution:

last
output

0

last
output

1

1/1

1/1
0/1

0/0

This is a finite-state strategy (realized by a Mealy automaton).
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Plan

1. The origin: Church’s Problem (done)

2. Muller games

3. Solving Muller games

4. Memory-optimal controllers

5. Optimal solutions for liveness requirements

6. Outlook
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Muller Games
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Approach for Solution of Church’s Problem

1. Translation of formula ϕ into Muller automaton

2. Conversion of Muller automaton into a Muller game graph

3. Transformation of Muller game into parity game

4. Solution of parity game

Steps 1 and 2 go from logic to automata (and games).

Steps 3 and 4 show how to solve “regular infinite games”.
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Muller Automata

are finite automata A = (S, Σ, s0, δ, F) accepting
ω-sequences.

Acceptance component: Family F = {F1, . . . , Fk} of
state-sets.

A accepts α ⇔ the states occurring infinitely often in the run
ρ of A on α form some set Fi

short: Inf(ρ) ∈ F
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Example

q0 q1

0

1

0

1

with F = {{q1}} accepts (0 + 1)∗1ω

with F = {{q1}, {q0, q1}} accepts (0∗1)ω

We dissolve a transition with (0
1) into two transitions, marking

that Player 1 picks 0 and Player 2 picks 1.

We obtain a “game graph”.
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Initial Example

ϕ(X, Y): ∀t (X(t) → Y(t)) ∧ ¬∃t(¬Y(t) ∧ ¬Y(t′))

∧ (∃ωt ¬X(t) → ∃ωt ¬Y(t))

1 2 6 7

3 4

5

1

1
01

0 0, 1

0, 1

0

0

0

1

1

where F = {{1, 2, 3, 4}, {1, 2, 3, 4, 5}, {1, 3, 4, 5}}
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Game Graphs

A game graph has the form G = (Q, Q1, E) where Q1 ⊆ Q and
E ⊆ Q × Q is the transition relation satisfying

∀q ∈ Q : qE , 6O (i.e. ∀q∃q′ : (q, q′) ∈ E)

We set Q2 := Q \ Q1

A play is a sequence ρ = r0r1r2 . . . with (ri, ri+1) ∈ E

Intuitively, a token is moved from vertex to vertex via edges,
Player 1 / 2 deciding on the vertices of Q1 / Q2

Wolfgang Thomas



Winning Conditions (Requirements)

in this talk:

Logical winning condition (e.g. written in MSO)

Muller condition:
for play ρ: Inf(ρ) ∈ F

Weak Muller condition
for play ρ: Occ(ρ) ∈ F
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Comparison with Church’s Problem

1. Church’s Problem uses a trivial graph
(over Q1 = {0, 1} and Q2 = {0′, 1′})
and an MSO winning condition.

2. Model of reactive system: finite game graph and logical
winning condition

3. Muller game: Finite game graph and Muller winning
condition

Cases 1 and 2 reduce to case 3:

ϕ is equivalent to Muller automaton Aϕ = (S, Q, s0, δ, F)

Now take game graph over Q × S with Muller condition
referring to second component.
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Strategies

A strategy for player 2 from q is a function f : Q+ → Q,
specifying for any play prefix q0 . . . qk with q0 = q and qk ∈ Q2

some vertex r ∈ Q with (qk, r) ∈ E

A strategy f for player 0 from q is called winning strategy for
player 0 from q if any play from q which is played according to
f is won by player 0 (according to the winning condition).

In the analogous way, one introduces strategies and winning
strategies for player 1.

We say: Player 2 wins from q if s/he has a winning strategy
from q
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Winning Regions

For a game Γ = (G,ϕ) with G = (Q, Q1, E), the winning
regions of players 1 and 2 are the sets

W1 := {q ∈ Q | player 1 wins from q}

W2 := {q ∈ Q | player 2 wins from q}

Remark: Each vertex q belongs at most to W1 or W2.
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An Example

Example:

1 32

765

4

Winning condition for player 2: Vertex 3 should be reached.

Weak Muller game: Use F = {F | 3 ∈ F}

W1 = {1, 2, 4, 5, 6, 7} W2 = {3}
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Determinacy

In general, the winning regions W0, W1 of players 1 and 2
satisfy W1 ∩ W2 = 6O

A game is called determined if from each vertex either of the
two players has a winning strategy.

Remark:

1. There are (exotic) games which are not determined.

2. In descriptive set theory one investigates which abstract
winning conditions define determined games.

3. All games in this talk determined.
(They are “Borel games”.)
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Church’s Problem Reformulated

Given a game Γ = (G,ϕ), G = (Q, Q1, E)

1. Decide for each q ∈ Q whether q ∈ W2 (i.e. whether
player 2 wins from q)

2. In this case:
Construct a suitable winning strategy from q (in the form
of an automaton, or program)

3. Optimize the construction of the winning strategy (e.g.,
time complexity) or optimize parameters of the winning
strategy (e.g., size of memory).

Solving a game means to provide algorithms for 1. and 2.
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Special Strategies

If Q is finite, then a strategy is a word function f : Q+ → Q

There are three basic types of strategies:

1. computable (recursive),

2. finite-state (computable by a Mealy automaton)

3. positional (memoryless, value given by current vertex
alone)

Other types: pushdown strategy, counter strategy etc.
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Büchi-Landweber Theorem

Finite Muller games are determined, one can compute the
winning regions of the two players, and one can compute
respective finite-state winning strategies.

Construction of winning strategies is controller synthesis.

Finite-state controller synthesis is possible in automated
manner for MSO- (or LTL-) specifications.
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Solving Muller Games
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An Interesting Muller Game (DJW-Game)

due to Dziembowski, Jurdzi ński, Walukiewicz (1997)

A

B

C

D

4

3

2

1

Number of letters chosen infinitely often should coincide with
the highest number chosen infinitely often.
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Latest Appearance Record
Visited letter LAR

A ABCD

C CABD

C CABD

D DCAB

B BDCA

D DBCA

C CDBA

D DCBA

D DCBA

Underlined position: “hit”
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Example Scenario

Assume the states C and D are repeated infinitely often.

Then:

the states A and B eventually arrive at the last two
positions and are not touched any more; so finally
underlinings appear at most on positions 1 and 2

position 2 is underlined again and again; if only position 1
is underlined from some point onwards, only the same
letter would be chosen from there onwards (and not two
states C and D as assumed)
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Solution of the DJW-Game

LAR-strategy for player 0:

During play, update and use the LAR as follows:

shift the current letter vertex to the front
underline the position from where the current letter was
taken

move to the number vertex given by underlined position

These are the two items performed by the strategy:

update of memory

choice of next step (“output”)

Result: “Finite-state winning strategy” with n! · n states for a
game graph with 2n vertices
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Proof Strategy

Given a Muller game over G, the transition structure of the
strategy automata can be constructed from G = (Q, Q1, E)

alone:

Memory space: LAR(Q) (LAR’s over Q)

Memory-update during play ρ ∈ Qω according to
LAR-update rule

Missing item: Output function
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Core of Proof

For ρ ∈ Qω consider induced ρ′ ∈ LAR(Q)

h := maximal hit occurring infinitely often in ρ′

R := (eventually fixed) set up to this hit position h

Then: Inf(ρ) = R

Reformulate winning condition using
c : LAR(Q) → {1, . . . , 2 · |Q|}

c({qi1
, . . . , qih

, . . . , qin) = 2h if {qi1
, . . . , qih

} ∈ F , else 2h − 1

Then: Inf(ρ) ∈ F iff max(Inf(c(ρ′)) is even

This is the “parity condition”
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On Parity Games

Emerson-Jutla and Mostowski (1991):

Parity games are determined (even over infinite game graphs),
and on the winning region Wi Player i has a positional (!)
winning strategy.

Proof by induction over the number of colors

Core of constrcution of winning strategy: Reachability analysis
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Weak Muller Games

Winning condition: Occ(ρ) ∈ F

A strategy automaton needs only to remember which states
have been visited.

Use “Appearance record” AR rather than LAR.

Introduce weak parity games, with winning condition

“the highest color of a visited vertex is even”

Memory states of strategy automata are sets of vertices rather
than lists of vertices.
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Looking Back

1. Translation of formula ϕ into Muller automaton

2. Conversion of Muller automaton into a Muller game graph

3. Transformation of Muller game into parity game

4. Solution of parity game
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Current Developments

Generalizations of the game model:
Infinite-state, concurrent, stochastic, timed, weighted,
distributed, multi-player games

Closer analysis (this talk)

1. Memory-optimal controllers
2. Optimal solutions for liveness requirements

Other issues:
Definability of controllers
Generalizing winning strategies
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Memory-optimal Controllers
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Memory Reduction

Fact: For a Muller game with n states
one can construct winning strategies with n! ∗ n states,
and n! is also a lower bound.

But: There are two sources of memory:

construction of Muller game arena

construction of finite-state controller

Problem 1: How are these two steps related?

Problem 2: Understand the space of strategies
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Three Approaches to Memory Reduction

Reduce memory for given strategy f

Use standard procedure as in DFA minimization

View the game graph as an automaton and reduce it first
(Holtmann, L öding (Aachen))

Search the space of all (winning) strategies to find one
with minimal-memory implementation
(open problem, hint by B üchi-Landweber)

Wolfgang Thomas



Holtmann-L öding Method

General plan:

Given a (weak) Muller game over Q,

transform it into a (weak) parity game over S × Q,

Forgetting about the partition (Q1, Q2) we obtain an
automaton with state-set S and input alphabet Q that
accepts (with the (weak) parity condition) precisely the
winning plays for Player 2.

Main step: Mimimize / Reduce the size of this automaton
in a way that a (weak) parity game over some S0 × Q can
be extracted.

Use S0 as memory space for winning strategy.
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Main Technical Points

Define (s, q) ∼ (s′, q) iff
from s with initial vertex q and from s′ with initial vertex q

the same plays are accepted.

Define s ≡ s′ iff for all q we have (s, q) ∼ (s′, q)

Then ≡-classes can serve as new states.

Use tests for (s, q) ∼ (s′, q) (from ω-automata theory)

Result: There are games with c · n vertices where the game
graph reduction yields an exponential gain over the standard
strategy minimization.

On the other hand, the approach misses some potentials of
minimization and is not a complete method.
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Optimal Solutions for Liveness
Requirements
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Optimality in Request-Response Games

Game arena G = (V , V0, E)

Subsets Rqu1, . . . , Rquk ⊆ V : “Requests”

Subsets Rsp1, . . . , Rspk ⊆ V : “Responses”

RR-condition:

k∧

i=1

∀s(Rqui(s) → ∃t (s < t ∧ Rspi(t)))

LTL:
k∧

i=1

G(Rqui → XF Rspi)
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Standard Solution of RR-Games

It suffices to keep a memory for the set of ”open requests”
Memory size: 2k for k conditions

Reduction to B üchi games

Result: Winning strategy which ensures bounded waiting
time between request and response
(Bound B := k · |V |).

Problem: Use finer measure than maximum of waiting times
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Measuring Quality of Solution

Penalty function associates to i-th moment of waiting a penalty

Linear Penalty model:
For each moment of waiting (for each RR-condition)
pay 1 unit

Quadratic Penalty model:
For the i-th moment of waiting pay i units

More general, use strictly growing unbounded penalty
function

Activation of i-th condition in a play ̺ is a visit to Rqui such
that all previous visits to Rqui are already matched by an
Rspi-visit.
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Values of Plays and Strategies

For a given penalty function define:

w̺(n) = sum of penalties in ̺(0) . . . ̺(n) divided by
number of activations

”average penalty sum per activation”

w(̺) = lim supn→∞
w̺(n)

Given a strategy σ for controller and a strategy τ for adversary

̺(σ, τ) := the play induced by σ and τ

w(σ) := supτ w(̺(σ, τ))

Call σ optimal if there is no other strategy with smaller value.
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On the Linear Penalty

For the linear penalty model, a finite-state optimal strategy
does not exist in general:

Rqu1, Rqu2

Rsp1

Rsp2
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Theorem

(with F. Horn and N. Wallmeier)

For any strictly increasing unbounded penalty function
one can decide whether a RR-game is won by controller
and in this case one can compute a finite-state optimal
winning strategy.

Proof ingredients:

It suffices to consider strategies with value ≤ M

(induced by bounded waiting time of standard solution).

Conversely: For strategies with value ≤ M one can
assume bounded waiting time.

Reduction to mean-payoff games (Zwick-Paterson)
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Building a Mean-Payoff Game

From a game graph G = (V , E) with k conditions

proceed to a game graph over V × N
k

State format: (v, n1, . . . , nk)

ni =

current waiting time for i-th condition since last activation

Derived mean-payoff game:

For each edge e = (u, m) → (v, n)

introduce edge weight

w(e) = n1 + . . . + nk (sum of current penalties)
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Boundedness Lemma

Let σ be a winning strategy of value ≤ M

Then one can construct a winning strategy σ′ with bounded
waiting times such that w(σ′) ≤ w(σ).

Consequence:

In the mean-payoff game, it suffices to consider waiting time
vectors in a domain [0, B]k rather than N

k.

So we obtain a finite MPG which can be solved.
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Intuition for Boundedness Lemma

Example scenarium:

Consider a winning strategy σ of value ≤ M which allows
unbounded waiting times just for the last RR-condition.

States: (v, m, m) with v ∈ V , m ∈ [0, B]k−1, m ≥ 0

In a play with unbounded waiting times for the last condition,
pick a “critical segment” (v, m, m), . . . , (v, m, m′)

where each position has a penalty ≥ M.

In σ′, this play segment is skipped. This decreases

the waiting time for the last component

the value of the strategy
(each deleted step has ≥ average penalty)
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Outlook
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Broader View on Transformations

A strategy defines an operator T : {0, 1}ω → {0, 1}ω

T is continuous if T(P)(t) depends only on a finite segment
of P.

The MSO-condition ϕ(X, Y):

(∃tX(t) ↔ ∀tY(t)) ∧ (∀tY(t) ∨ ∀t¬Y(t))

is solvable only by the non-continuous operator T0 with

T0( 6O) = 0ω and T0(P) = 1ω for P , 6O
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On Continuity

Landweber, Hosch (1971): It is decidable whether a MSO
winning condition can be solved by a finite-state strategy with
bounded delay.

Example 1: Division of a sequence by two

T−: P(0)P(1) . . . 7→ P(0)P(2)P(4) . . .

T− is continuous, with linearly increasing delay.

Example 2: Doubling a sequence

T+: P(0)P(1) . . . 7→ P(0)P(0)P(1)P(1) . . .

T+ is bit-by-bit-computable with unbounded memory,
or with a sequential machine.
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Conclusion

Church’s Problem is far from closed.

A current challenge is to shift the investigation from
decision problems to various optimization problems.

Another challenge is to investigate the synthesis of
generalized automata (e.g., sequential machines)
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